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Preface

The world has changed in transformative ways. Data and evidence are ubiquitous.
Quantitative information suffuses our talk of everything from policy to health care to
job searches to politics to sports to education to dating to national security.

As a result, statistics and quantitative reasoning must no longer be the purview of
only those who have a knack for mathematics or are headed for technical careers.
Acquiring competence in foundational quantitative reasoning is now a fundamental
responsibility of every educated human being and citizen. And this necessitates new
ways of teaching and learning.

It was with that goal in mind that we decided to write Thinking Clearly with Data.
But we didnt start with the book. Much of the material and ideas that ultimately found
their way into the coming chapters were first developed for courses aimed at providing
to students with little technical background the tools needed to be serious, thoughtful,
and skeptical consumers of quantitative information. These courses include traditional
university offerings, like introductions to quantitative reasoning taught to both under-
graduate and graduate students at the University of Chicago. But they also include
executive education courses offered to policy makers, military officers, national security
experts, intelligence professionals, and journalists.

We learned a lot of lessons along the way that inform the choices we made in writing
and organizing this book. Perhaps the most important was to create a shared language.

We knew we didn't want to teach a traditional statistics course. Such courses, in our
view, are often too technical for many students and don t get to the most important and
interesting issues, the ones that really matter for using quantitative information to make
our lives and the world better. So, it was tempting to jump as quickly as possible to the
exciting topics, like why correlation doesn't imply causation. But that would have been
a mistake. A person cant understand why correlation doesnt imply causation until they
understand what correlation and causation are.

For that reason, part 1 of this book is all about establishing a shared language. We
define, conceptually and technically (but still accessibly), what we mean when we talk
about correlation and causation—not in the sense ofhow to calculate a correlation coef-

ficient or how to write down a causal effect in potential outcomes notation (though
both will be covered), but in the sense of the questions, What do the words, prop-
erly understood and digested, mean in plain English? What's hard about correlation
and causation? Why are they usefully separated? What are these two kinds of things,
correlations and causal relationships, good for?

But what about the problem of motivation? If you don't put the good stuff up front,
how do you keep people engaged? Well, first, who says a conceptual understanding of
what causality does and does not mean isn't the good stuff? It is great stuff. But, more
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to the point, our approach is this: if you want people to be engaged, make the material
engaging. To us, this means several things.

The first is to tell stories. Throughout, you will find every conceptual discussion aug-
mented by at least one extended, genuine, real-world example. Some of those examples
will be about scientific studies. Many will be about personal experiences of ours where
thinking clearly about quantitative evidence made a difference in the decisions we made.
Others will involve reflections on the use of data and evidence in news, sports, policy,
health care, and culture. This stuff really matters for how lives are lived and decisions are
made in every realm of human endeavor. We want to keep that fact in the foreground.
That is also why, despite the fact that this is a book by two political scientists, many of
the examples are not drawn from politics.

The second way to engage readers is to emphasize ideas first and technicalities sec-
ond. We love technicalities. But technicality can often be the enemy of understanding.
When things get technical, lots of people stop thinking and start memorizing. We fer-
vently wish to avoid that. So we always talk about the ideas and why they matter first.
We treat things graphically whenever we can. And we do as little math as possible. But
as little as possible isn't zero, for at least two reasons.

Familiarity with some technical matters is part of being a clear thinker. You cant
understand mean reversion if you dont know what a mean or noise is. You cant
understand publication bias and the replication crisis if you don t know what statis-
tical significance means or what a p-value is. And it is hard to understand the problem
of confounding or the answers offered by different research designs without being able
to interpret a regression.

Moreover, sometimes being clear and precise requires a bit of math. We spend lots
of time talking conceptually about counterfactuals and causality. But counterfactual
talk can get a bit mystical. There is an extra degree of clarity that comes from writ-
ing down some potential outcomes and a proper definition of an effect that we think
is indispensable. So we do not dispense with it. But, always, our emphasis is on clear
thinking.

A third lesson for engaging writing is that it isn't enough for each chapter or lesson
to tell a story. The whole course (or book) must do so. For us, the story is that making
good decisions and doing good in our data-driven age requires clear thinking from each
and every one of us. We can t just leave it to the experts, for many experts were never
taught to think clearly about quantitative information. So we have to do it for ourselves
or we will be frequently misled and may well make terrible mistakes.

Organization
That story informs the organization of the book. As we already noted, we open in

part 1 by creating a shared language, focusing on the ideas of correlation and causation
as the cornerstones of quantitative analysis.

With those ideas in hand, part 2 focuses on how we use data and evidence to figure
out whether a correlation, causal or not, exists between features ofthe world. One ofour
goals in this part of the book is to convince everyone that there is plenty of good stuff,
even before causal inference. Chapter 4 gets us motivated by explaining the incredi-
bly common mistake of selecting on the dependent variable, by showing how trying to
establish correlation without variation is impossible, and by illustrating the staggering
number of instances when this mistake really matters. Chapter 5 turns to measuring
correlations, focusing on a graphical explanation of regression. Chapter 6 introduces
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statistical significance and hypothesis testing, framing everything in terms of a device
we call our favorite equation, which recurs throughout the book:

Estimate = Estimand + Bias + Noise

If chapter 4 didn't already achieve this goal, chapter 7 makes it clear that there is plenty
at stake in thinking clearly about what it means to establish a relationship in data by dis-
cussing the problems ofp-hacking, publication bias, and related issues. Finally, chapter
8 covers the under-discussed topic ofreversion to the mean and then uses it in conjunc-
tion with our prior discussion ofpublication bias to reflect on the replication crisis and
the common phenomenon of scientific estimates shrinking over time.

Part 3 turns to causal inference, reminding readers of how important knowledge of
causality is for making decisions about how to intervene in the world. Chapter 9 explains
why correlation need not imply causation, discussing both confounders and reverse
causality. Chapter 10 addresses the issue ofstatistical controls and provides some graph-
ical explanations in the context of regression. Chapters 11-13 provide an overview of
how scholars use research designs to try to learn about causality. Chapter 11 covers both
randomized and natural experiments, introducing instrumental variables as a method
for dealing with issues of noncompliance. Chapters 12 and 13 cover regression discon-
tinuity and difference-in-differences designs, respectively. Chapter 14 closes this part of
the book with a discussion of the challenges of learning about causal mechanisms.

Part 4 points out that we are not done once we ve tackled causality. Even reliable
knowledge of causal effects is not, on its own, sufficient to ensure that we are thinking
clearly about how to use quantitative information to make good decisions. Chapter 15
points out how easy it is to fool yourself into thinking that a piece of quantitative infor-
mation that answers one question in fact answers an entirely different one, encouraging
readers to avoid this mistake by translating information presented technically into sub-
stance. In the course of so doing, we introduce Bayes' rule. Chapter 16 turns to issues of
measurement, external validity, and extrapolation, which also leads us into a discussion
ofsample selection bias. And, finally, chapter 17 confronts some ofthe fundamental lim-
its that quantitative analysis, no matter how clearly thought about, faces in informing
decision making.

At the end of each chapter, there are exercises that readers can work through on
their own to make sure they are grasping the material. Some of these exercises involve
analyzing data, which can be tackled by readers and students who have learned (or are
learning) how to use statistical software like Stata or R. The end ofeach chapter also has
a "Readings and References" section that will allow curious readers to find the sources
that are mentioned in the main text and dive more deeply into a particular topic.

Who Is This Book For?

We hope this book is for everybody interested in learning to think clearly about
data, evidence, and quantitative reasoning. As we ve mentioned, we have used these
materials for a wide range of audiences, from undergraduates to highly accomplished
professionals.

In our view, to prepare for living in our data-driven age, every undergraduate should
meet material like this, ideally in their first couple of years of college. So we wrote the
book in the hope that it would be helpful to instructors in many different disciplines who
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teach quantitative reasoning, whether in general education courses or in an introduc-
tory course inside a department. We believe this will be especially true for instructors
who want to take an approach that is more conceptual than the traditional statistics- or
methods-based approach, while still covering some fundamental technical content.

We think the book works equally well for professional students. We have taught it to
graduate students earning masters degrees in public policy. Some go on to take more
technical courses in econometrics or program evaluation. But, for many, the essen-
tial skill is to learn to think critically and clearly about quantitative information. Our
approach fits the needs of these students while, at the same time, providing the concep-
tual foundations that more technically inclined students will need in future courses.

Colleagues at other universities have also employed these materials in more
advanced courses for social science majors who, for instance, must learn quantitative
methods in preparation for writing a thesis. In that setting, our book may benefit from
being coupled with another text that is somewhat more technical or places more empha-
sis on issues ofstatistical computing. In all of these settings, we hope the exercises at the
end of each chapter will be helpful. These include applied data analyses, for which data
are available to download online.

Finally, we also believe this book will be useful to many doctoral students. Often, in
doctoral training, statistical material is taught quickly and at a high level of technicality.
This can be productive; mastering advanced techniques is both challenging and impor-
tant. But, in our experience, even the best doctoral students can lose sight ofwhat really
matters—how we learn about the world from data—as they focus on proving theorems
and programming estimators. We very much hope that this book might serve as a guide
to such students, helping to keep the big picture in clear view even as they work hard
on the technical details.
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CHAPTER 1

Thinking Clearly in a Data-Driven Age

What You'll Learn

• Learning to think clearly and conceptually about quantitative information is
important for lots of reasons, even if you have no interest in a career as a data
analyst.

• Even well-trained people often make crucial errors with data.
• Thinking and data are complements, not substitutes.
• The skills you learn in this book will help you use evidence to make better

decisions in your personal and professional life and be a more thoughtful and
well-informed citizen.

Introduction

We live in a data-driven age. According to former Google CEO Eric Schmidt, the
contemporary world creates as much new data every two days as had been created from
the beginning of time through the year 2003. All this information is supposed to have
the power to improve our lives, but to harness this power we must learn to think clearly
about our data-driven world. Clear thinking is hard—especially when mixed up with
all the technical details that typically surround data and data analysis.

Thinking clearly in a data-driven age is, first and foremost, about staying focused
on ideas and questions. Technicality, though important, should serve those ideas and
questions. Unfortunately, the statistics and quantitative reasoning classes in which most
people learn about data do exactly the opposite—that is, they focus on technical details.
Students learn mathematical formulas, memorize the names of statistical procedures,
and start crunching numbers without ever having been asked to think clearly and con-
ceptually about what they are doing or why they are doing it. Such an approach can
work for people to whom thinking mathematically comes naturally. But we believe it is
counterproductive for the vast majority of us. When technicality pushes students to
stop thinking and start memorizing, they miss the forest for the trees. And its also
no fun.

Our focus, by contrast, is on conceptual understanding. What features of the world
are you comparing when you analyze data? What questions can different kinds of
comparisons answer? Do you have the right question and comparison for the prob-
lem you are trying to solve? Why might an answer that sounds convincing actually
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be misleading? How might you use creative approaches to provide a more informative
answer?

It isn't that we don t think the technical details are important. Rather, we believe that
technique without conceptual understanding or clear thinking is a recipe for disaster.
In our view, once you can think clearly about quantitative analysis, and once you under-
stand why asking careful and precise questions is so important, technique will follow
naturally. Moreover, this way is more fun.

In this spirit, we've written this book to require no prior exposure to data analy-
sis, statistics, or quantitative methods. Because we believe conceptual thinking is more
important, we've minimized (though certainly not eliminated) technical material in
favor of plain-English explanations wherever possible. Our hope is that this book will
be used as an introduction and a guide to how to think about and do quantitative anal-
ysis. We believe anyone can become a sophisticated consumer (and even producer) of
quantitative information. It just takes some patience, perseverance, hard work, and a
firm resolve to never allow technicality to be a substitute for clear thinking.

Most people don t become professional quantitative analysts. But whether you do
or do not, we are confident you will use the skills you learn in this book in a variety
ofways. Many ofyou will have quantitative analysts working for or with you. And all of
you will read studies, news reports, and briefings in which someone tries to convince
you of a conclusion using quantitative analyses. This book will equip you with the clear
thinking skills necessary to ask the right questions, be skeptical when appropriate, and
distinguish between useful and misleading evidence.

Cautionary Tales
To whet your appetite for the hard work ahead, let's start with a few cautionary tales

that highlight the importance of thinking clearly in a data-driven age.

Abes Hasty Diagnosis
Ethan's first child, Abe, was born in July 2006. As a baby, he screamed and cried

almost non-stop at night for five months. Abe was otherwise happy and healthy, though
a bit on the small side. When he was one year old the family moved to Chicago, without
which move, you'd not be reading this book. (That last sentence contains a special kind
ofclaim called a counter/actual Counterfactuals are really important, and you are going
to learn all about them in chapter 3.) After noticing that Abe was small for his age and
growing more slowly than expected, his pediatrician decided to run some tests.

After some lab work, the doctors were pretty sure Abe had celiac disease—a digestive
disease characterized by gluten intolerance. The good news: celiac disease is not life
threatening or even terribly serious if properly managed through diet. The bad news:
in 2007, the gluten-free dietary options for kids were pretty miserable.

It turns out that Abe actually had two celiac-related blood tests. One came back pos-
itive (indicating that he had the disease), the other negative (indicating that he did not
have the disease). According to the doctors, the positive test was over 80 percent accu-
rate. "This is a strong diagnosis," they said. The suggested course of action was to put
Abe on a gluten-free diet for a couple of months to see if his weight increased. If it did,
they could either do a more definitive biopsy or simply keep Abe gluten-free for the rest
of his life.

Ethan asked for a look at the report on Abe's bloodwork. The doctors indicated they
didn't think that would be useful since Ethan isn't a doctor. This response was neither
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surprising nor hard to understand. People, especially experts and authority figures,
often don t like acknowledging the limits oftheir knowledge. But Ethan wanted to make
the right decision for his son, so he pushed hard for the information. One of the goals
of this book is to give you some of the skills and confidence to be your own advocate in
this way when using information to make decisions in your life.

Two numbers characterize the effectiveness ofany diagnostic test. The first is its false
negative rate, which is how frequently the test says a sick person is healthy. The second
is its false positive rate, which is how frequently the test says a healthy person is sick.
You need to know both the false positive rate and the false negative rate to interpret
a diagnostic tests results. So Abes doctors' statement that the positive blood test was
80 percent accurate wasn't very informative. Did that mean it had a 20 percent false
negative rate? A 20 percent false positive rate? Do 80 percent ofpeople who test positive
have celiac disease?

Fortunately, a quick Google search turned up both the false positive and false neg-
ative rates for both of Abes tests. Heres what Ethan learned. The test on which Abe

came up positive for celiac disease has a false negative rate of about 20 percent. That
is, if 100 people with celiac disease took the test, about 80 of them would correctly test
positive and the other 20 would incorrectly test negative. This fact, we assume, is where
the claim of 80 percent accuracy came from. The test, however, has a false positive rate
of 50 percent! People who don t have celiac disease are just as likely to test positive as
they are to test negative. (This test, it is worth noting, is no longer recommended for
diagnosing celiac disease.) In contrast, the test on which Abe came up negative for celiac
disease had much lower false negative and false positive rates.

Before getting the test results, a reasonable estimate of the probability of Abe having
celiac disease, given his small size, was around 1 in 100. That is, about 1 out of every
100 small kids has celiac disease. Armed with the lab reports and the false positive and
false negative rates, Ethan was able to calculate how likely Abe was to have celiac disease
given his small size and the test results. Amazingly, the combination of testing positive
on an inaccurate test and testing negative on an accurate test actually meant that the
evidence suggested that Abe was much less likely than 1 in 100 to have celiac disease. In
fact, as we will show you in chapter 15, the best estimate of the likelihood ofAbe having
celiac, given the test results, was about 1 in 1,000. The blood tests that Abes doctors were
sure supported the celiac diagnosis actually strongly supported the opposite conclusion.
Abe was almost certain not to have celiac disease.

Ethan called the doctors to explain what he'd learned and to suggest that moving
his pasta-obsessed son to a gluten-free diet, perhaps for life, was not the prudent next
step. Their response: "A diagnosis like this can be hard to hear." Ethan found a new
pediatrician.

Heres the upshot. Abe did not have celiac disease. The kid was just a bit small. Today
he is a normal-sized kid with a ravenous appetite. But if his father didn't know how
to think about quantitative evidence or lacked the confidence to challenge a mistaken
expert, he'd have spent his childhood eating rice cakes. Rice cakes are gross, so he might
still be small.

Civil Resistance

As many around the world have experienced, citizens often find themselves in deep
disagreement with their government. When things get bad enough, they sometimes
decide to organize protests. If you ever find yourself doing such organizing, you will
face many important decisions. Perhaps none is more important than whether to build
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a movement with a non-violent strategy or one open to a strategy involving more vio-
lent forms of confrontation. In thinking through this quandry, you will surely want to
consult your personal ethics. But you might also want to know what the evidence says
about the costs and benefits ofeach approach. Which kind oforganization is most likely
to succeed in changing government behavior? Is one or the other approach more likely
to land you in prison, the hospital, or the morgue?

There is some quantitative evidence that you might use to inform your decisions.
First, comparing anti-government movements across the globe and over time, govern-
ments more often make concessions to fully non-violent groups than to groups that use
violence. And even comparing across groups that do use violence, governments more
frequently make concessions to those groups that engage in violence against military
and government targets rather than against civilians. Second, the personal risks asso-
ciated with violent protest are greater than those associated with non-violent protest.
Governments repress violent uprisings more often than they do non-violent protests,
making concerns about prison, the hospital, and the morgue more acute.

This evidence sounds quite convincing. A non-violent strategy seems the obvi-
ous choice. It is apparently both more effective and less risky. And, indeed, on the
basis of this kind of data, political scientists Erica Chenoweth and Evan Perkoski con-
clude that "planning, training, and preparation to maintain nonviolent discipline is
key—especially (and paradoxically) when confronting brutal regimes."

But lets reconsider the evidence. Start by asking yourself, In what kind ofa setting is a
group likely to engage in non-violent rather than violent protest? A few thoughts occur
to us. Perhaps people are more likely to engage in non-violent protest when they face a
government that they think is particularly likely to heed the demands of its citizens. Or
perhaps people are more likely to engage in non-violent protest when they have broad-
based support among their fellow citizens, represent a group in society that can attract
media attention, or face a less brutal government.

Ifany ofthese things are true, we should worry about the claim that maintaining non-
violent discipline is key to building a successful anti-government movement. (Which
isn't to say that we are advocating violence.) Lets see why.

Empirical studies find that, on average, governments more frequently make con-
cessions in places that had non-violent, rather than violent, protests. The claimed
implication rests on a particular interpretation of that difference—namely, that the
higher frequency of government concessions in non-violent places is caused by the use
ofnon-violent tactics. Put differently, all else held equal, if a given movement using vio-
lent methods had switched to using non-violent methods, the government would have
been more likely to grant concessions. But is this causal interpretation really justified
by the evidence?

Suppose it's the case that protest movements are more likely to turn to violence when
they do not have broad-based support among their fellow citizens. Then, when we com-
pare places that had violent protests to places that had non-violent protests, all else
(other than protest tactics) is not held equal. Those places differ in at least two ways.
First, they differ in terms of whether they had violent or non-violent protests. Second,
they differ in terms of how supportive the public was of the protest movement.

This second difference is a problem for the causal interpretation. You might imagine
that public opinion has an independent effect on the governments willingness to grant
concessions. That is, all else held equal (including protest tactics), governments might
be more willing to grant concessions to protest movements with broad-based public
support. If this is the case, then we cant really know whether the fact that governments
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grant concessions more often to non-violent protest movements than to violent protest
movements is because of the difference in protest tactics or because the non-violent
movements also happen to be the movements with broad-based public support. This is
the classic problem of mistaking correlation for causation.

It is worth noting a few things. First, if government concessions are in fact due to
public opinion, then it could be the case that, were we actually able to hold all else
equal in our comparison ofviolent and non-violent protests, we would find the opposite
relationship—that is, that non-violence is not more effective than violence (it could even
be less effective). Given this kind of evidence, we just cant know.

Second, in this example, the conclusion that appears to follow ifyou don t force your-
self to think clearly is one we would all like to be true. Who among us would not like to
live in a world where non-violence is always preferred to violence? But the whole point
of using evidence to help us make decisions is to force us to confront the possibility
that the world may not be as we believe or hope it is. Indeed, it is in precisely those
situations where the evidence seems to say exactly what you would like it to say that it
is particularly important to force yourself to think clearly.

Third, we ve pointed to one challenge in assessing the effects of peaceful versus vio-
lent protest, but there are others. For instance, think about the other empirical claim we
discussed: that violent protests are more likely to provoke the government into repres-
sive crack-downs than are non-violent protests. Recall, we suggested that people might
be more likely to engage in non-violent protest when they are less angry at their govern-
ment, perhaps because the government is less brutal. Ask yourselfwhy, if this is true, we
have a similar problem of interpretation. Why might the fact that there are more gov-
ernment crack-downs following violent protests than non-violent protests not mean
that switching from violence to non-violence will reduce the risk of crack-downs? The
argument follows a similar logic to the one we just made regarding concessions. If you
don't see how the argument works yet, that's okay. You will by the end of chapter 9.

Broken-Windows Policing
In 1982, the criminologist George L. Kelling and the sociologist James Q. Wilson

published an article in The Atlantic proposing a new theory of crime and policing that
had enormous and long-lasting effects on crime policy in the United States and beyond.

Kelling and Wilsons theory is called broken windows. It was inspired by a program
in Newark, New Jersey, that got police out of their cars and walking a beat. According to
Kelling and Wilson, the program reduced crime by elevating "the level ofpublic order."
Public order is important, they argue, because its absence sets in motion a vicious cycle:

A piece of property is abandoned, weeds grow up, a window is smashed. Adults
stop scolding rowdy children... Families move out, unattached adults move in.
Teenagers gather in front of the corner store. The merchant asks them to move;
they refuse. Fights occur. Litter accumulates. People start drinking in front of the
grocery...

Residents will think that crime, especially violent crime, is on the rise... They
will use the streets less often... Such an area is vulnerable to criminal invasion.

This idea that policing focused on minimizing disorder can reduce violent crime had
a big impact on police tactics. Most prominently, the broken-windows theory was the
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guiding philosophy in New York City in the 1990s. In a 1998 speech, then New York
mayor Rudy Giuliani said,

We have made the "Broken Windows" theory an integral part of our law enforce-
ment strategy...

You concentrate on the little things, and send the clear message that this City
cares about maintaining a sense of law and order... then the City as a whole will
begin to become safer.

And, indeed, crime in New York city did decline when the police started focusing
"on the little things." According to a study by Hope Corman and H. Naci Mocan, mis-
demeanor arrests increased 70 percent during the 1990s and violent crime decreased
by more than 56 percent, double the national average.

To assess the extent to which broken-windows policing was responsible for this fall
in crime, Kelling and William Sousa studied the relationship between violent crime
and broken-windows approaches across New York City's precincts. If minimizing dis-
order causes a reduction in violent crime, they argued, then we should expect the largest
reductions in crime to have occurred in neighborhoods where the police were most
focused on the broken-windows approach. And this is just what they found. In precincts
where misdemeanor arrests (the "little things") were higher, violent crime decreased
more. They calculated that "the average NYPD precinct... could expect to suffer one
less violent crime for approximately every 28 additional misdemeanor arrests."

This sounds pretty convincing. But lets not be too quick to conclude that arresting
people for misdemeanors is the answer to ending violent crime. Two other scholars,
Bernard Harcourt and Jens Ludwig, encourage us to think a little more clearly about
what might be going on in the data.

The issue that Harcourt and Ludwig point out is something called reversion to the
mean (which we 11 talk about a lot more in chapter 8). Here's the basic concern. In any
given year, the amount of crime in a precinct is determined by lots of factors, includ-
ing policing, drugs, the economy, the weather, and so on. Many of those factors are
unknown to us. Some of them are fleeting; they come and go across precincts from year
to year. As such, in any given precinct, we can think of there being some "baseline"
level of crime, with some years randomly having more crime and some years randomly
having less (relative to that precinct-specific baseline).

In any given year, if a precinct had a high level of crime (relative to its baseline),
then it had bad luck on the unknown and fleeting factors that help cause crime. Prob-
ably next year its luck wont be as bad (that's what fleeting means), so that precinct will
likely have less crime. And if a precinct had a low level of crime (relative to its baseline)
this year, then it had good luck on the unknown and fleeting factors, and it will prob-
ably have worse luck next year (crime will go back up). Thus, year to year, the crime
level in a precinct tends to revert toward the mean (i.e., the precinct's baseline level of
crime).

Now, imagine a precinct that had a really high level ofviolent crime in the late 1980s.
Two things are likely to be true of that precinct. First, it is probably a precinct with a
high baseline of violent crime. Second, it is also probably a precinct that had a bad
year or two—that is, for idiosyncratic and fleeting reasons, the level of crime in the late
1980s was high relative to that precinct's baseline. The same, of course, is true in reverse
for precincts that had a low level of crime in the late 1980s. They probably have a low
baseline of crime, and they also probably had a particularly good couple of years.
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Why is this a problem for Kelling and Sousas conclusions? Because ofreversion to the
mean, we would expect the most violent precincts in the late 1980s to show a reduction
in violent crime on average, even with no change in policing. And unsurprisingly, given
the polices objectives, but unfortunately for the study, it was precisely those high-crime
precincts in the 1980s that were most likely to get broken-windows policing in the early
1990s. So, when we see a reduction in violent crime in the precincts that had the most
broken-windows policing, we don't know if its the policing strategy or reversion to the
mean that's at work.

Harcourt and Ludwig go a step further to try to find more compelling evidence.
Roughly speaking, they look at how changes in misdemeanor arrests relate to changes
in violent crime in precincts that had similar levels of violent crime in the late 1980s.
By comparing precincts with similar starting levels ofviolent crime, they go some way
toward eliminating the problem of reversion to the mean. Surprisingly, this simple
change actually flips the relationship! Rather than confirming Kelling and Sousas find-
ing that misdemeanor arrests are associated with a reduction in violent crime, Harcourt
and Ludwig find that precincts that focused more on misdemeanor arrests actually
appear to have experienced an increase in violent crime. Exactly the opposite of what
we would expect if the broken-windows theory is correct.

Now, this reversal doesn't settle the matter on the efficacy ofbroken-windows polic-
ing. The relationship between misdemeanor arrests and violent crime that Harcourt and
Ludwig find could be there for lots of reasons other than misdemeanor arrests causing
an increase in violent crime. For instance, perhaps the neighborhoods with increasing
misdemeanors are becoming less safe in general and would have experienced more vio-
lent crime regardless ofpolicing strategies. What these results do show is that the data,
properly considered, certainly don t offer the kind of unequivocal confirmation of the
broken-windows ideas that you might have thought from Kelling and Sousas finding.
And you can only see this if you have the ability to think clearly about some subtle
issues.

This flawed thinking was important. Evidence-based arguments like Kelling and
Sousas played a role in convincing politicians and policy makers that broken-windows
policing was the right path forward when, in fact, it might have diverted resources away
from preventing and investigating violent crime and may have created a more adver-
sarial and unjust relationship between the police and the disproportionately poor and
minority populations who were frequently cited for "the small stuff."

Thinking and Data Are Complements, Not Substitutes
Our quantitative world is full oflots ofexciting new data and analytic tools to analyze

that data with fancy names like machine learning algorithms, artificial intelligence, ran-
dom forests, and neural networks. Increasingly, we are even told that this new technol-
ogy will make it possible for the machines to do the thinking for us. But that isn't right.
As our cautionary tales highlight, no data analysis, no matter how futuristic its name,
will work if we aren't asking the right questions, ifwe aren't making the right compar-
isons, if the underlying assumptions arent sound, or if the data used arent appropriate.
Just because an argument contains seemingly sophisticated quantitative data analysis,
that doesn't mean the argument is rigorous or right. To harness the power of data to
make better decisions, we must combine quantitative analysis with clear thinking.

Our stories also illustrate how our intuitions can lead us astray. It takes lots of
care and practice to train ourselves to think clearly about evidence. The doctors'
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intuition that Abe had celiac disease because of a test with 80 percent accuracy and the
researchers' intuition that broken-windows policing works because crime decreased in
places where it was deployed seem sensible. But both intuitions were wrong, suggesting
that we should be skeptical of our initial hunches. The good news is that clear thinking
can become intuitive if you work at it.

Data and quantitative tools are not a substitute for clear thinking. In fact, quantitative
skills without clear thinking are quite dangerous. We suspect, as you read the coming
chapters, you will be jarred by the extent to which unclear thinking affects even the
most important decisions people make. Through the course of this book, we will see
how misinterpreted information distorts life-and-death medical choices, national and
international counterterrorism policies, business and philanthropic decisions made by
some of the worlds wealthiest people, how we set priorities for our children's educa-
tion, and a host of other issues from the banal to the profound. Essentially, no aspect
of life is immune from critical mistakes in understanding and interpreting quantitative
information.

In our experience, this is because unclear thinking about evidence is deeply ingrained
in human psychology. Certainly our own intuitions, left unchecked, are frequently sub-
ject to basic errors. Our guess is that yours are too. Most disturbingly, the experts on
whose advice you depend—be they doctors, business consultants, journalists, teach-
ers, financial advisors, scientists, or what have you—are often just as prone to making
such errors as the rest of us. All too often, because they are experts, we trust their judg-
ment without question, and so do they. That is why it is so important to learn to think
clearly about quantitative evidence for yourself. That is the only way to know how to ask
the right questions that lead you, and those on whose advice you depend, to the most
reliable and productive conclusions possible.

How could experts in so many fields make important errors so often? Expertise, in
any area, comes from training, practice, and experience. No one expects to become an
expert in engineering, finance, plumbing, or medicine without instruction and years of
work. But, despite its fundamental and increasing importance for so much of life in our
quantitative age, almost no one invests this kind of effort into learning to think clearly
with data. And, as we ve said, even when they do, they tend to be taught in a way that
over-emphasizes the technical and under-emphasizes the conceptual, even though the
fundamental problems are almost always about conceptual mistakes in thinking rather
than technical mistakes in calculation.

The lack of expertise in thinking presents us with two challenges. First, if so much
expert advice and analysis is unreliable, how do you know what to believe? Second, how
can you identify those expert opinions that do in fact reflect clear thinking?

This book provides a framework for addressing these challenges. Each ofthe coming
chapters explains and illustrates, through a variety ofexamples, fundamental principles
of clear thinking in a data-driven world. Part 1 establishes some shared language—
clarifying what we mean by correlation and causation and what each is useful for. Part 2
discusses how we can tell whether a statistical relationship is genuine. Part 3 discusses
how we can tell if that relationship reflects a causal phenomenon or not. And part 4
discusses how we should and shouldn't incorporate quantitative information into our
decision making.

Our hope is that reading this book will help you internalize the principles of clear
thinking in a deep enough way that they start to become second nature. You will know
you are on the right path when you find yourself noticing basic mistakes in how peo-
ple think and talk about the meaning of evidence everywhere you turn—as you watch
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the news, peruse magazines, talk to business associates, visit the doctor, listen to the
color commentary during athletic competitions, read scientific studies, or participate
in school, church, or other communal activities. You will, we suspect, find it difficult to
believe how much nonsense you're regularly told by all kinds ofexperts. When this starts
to happen, try to remain humble and constructive in your criticisms. But do feel free
to share your copy of this book with those whose arguments you find are in particular
need of it. Or better yet, encourage them to buy their own copy!

Readings and References
The essay on non-violent protest by Erica Chenoweth and Evan Perkoski that we
quote can be found at https://politicalviolenceataglance.org/2018/05/08/states-are-far
-less-likely-to-engage-in-mass-violence-against-nonviolent-uprisings-than-violent
-uprisings/.

The following book contains more research on the relationship between non-
violence and efficacy:

Erica Chenoweth and Maria J. Stephan. 2011. Why Civil Resistance Works: The
Strategic Logic ofNonviolent Conflict Columbia University Press.

The following articles were discussed in this order on the topic of broken windows
policing:

George L. Kelling and James Q. Wilson. 1982. "Broken Windows: The Police and
Neighborhood Safety." The Atlantic. March https://www.theatlantic.com/magazine
/archive/1982/03/broken-windows/304465/.

Archives ofRudolph W. Giuliani. 1998. "The Next Phase of Quality of Life: Creating a
More Civil City." February 24. http://www.nyc.gov/html/rwg/html/98a/quality.html.
Hope Corman and H. Naci Mocan. 2005. "Carrots, Sticks, and Broken Windows."
Journal ofLaw and Economics 48(l):235-66.

George L. Kelling and William H. Sousa, Jr. 2001. Do Police Matter? An Analysis of
the Impact of New York City's Police Reforms. Civic Report for the Center for Civic
Innovation at the Manhattan Institute.

Bernard E. Harcourt and Jens Ludwig. 2006. "Broken Windows: New Evidence from
New York City and a Five-City Social Experiment." University ofChicago Law Review
73:271-320. The published version has a misprinted sign in the key table. For the
correction, see Errata, 74 U. Chi. L. Rev. 407 (2007).
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CHAPTER 2

Correlation: What Is It and
What Is It Good For?

What You'll Learn

• Correlations tell us about the extent to which two features of the world tend to
occur together.

• In order to measure correlations, we must have data with variation in both
features of the world.

• Correlations can be potentially useful for description, forecasting, and causal
inference. But we have to think clearly about when they're appropriate for each
of these tasks.

• Correlations are about linear relationships, but that's not as limiting as you
might think.

Introduction

Correlation doesn t imply causation. Thats a good adage. However, in our experience,
it's less useful than it might be because, while many people know that correlation doesn't
imply causation, hardly anyone knows what correlation and causation are.

In part 1, we are going to spend some time establishing a shared vocabulary. Making
sure that we are all using these and a few other key terms to mean the same thing is
absolutely critical ifwe are to think clearly about them in the chapters to come.

This chapter is about correlation: what it is and what it's good for. Correlation is the
primary tool through which quantitative analysts describe the world, forecast future
events, and answer scientific questions. Careful analysts do not avoid or disregard cor-
relations. But they must think clearly about which kinds of questions correlations can
and cannot answer in different situations.

What Is a Correlation?

The correlation between two features of the world is the extent to which they tend
to occur together. This definition tells us that a correlation is a relationship between
two things (which we callfeatures of the world or variables). If two features of the world
tend to occur together, they are positively correlated. If the occurrence of one feature
of the world is unrelated to the occurrence of another feature of the world, they are
uncorrelated. And ifwhen one feature of the world occurs the other tends not to occur,
they are negatively correlated.
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Table 2.1. Oil production and type of government.

Not Major Oil Producer Major Oil Producer Total

Democracy 118 9 127
Autocracy 29 11 40
Total 147 20 167

What does it mean for two features of the world to tend to occur together? Lets start
with an example ofthe simplest kind. Suppose we want to assess the correlation between
two features of the world, and there are only two possible values for each one (we call
these binary variables). For instance, whether it is after noon or before noon is a binary
variable (by contrast, the time measured in hours, minutes, and seconds is not binary;
it can take many more than two values).

Political scientists and economists sometimes talk about the resource curse or the

paradox ofplenty. The idea is that countries with an abundance of natural resources
are often less economically developed and less democratic than those with fewer nat-
ural resources. Natural resources might make a country less likely to invest in other
forms of development, or they might make a country more subject to violence and
autocracy.

To assess the extent of this resource curse, we might want to know the correla-
tion between natural resources and some feature of the economic or political system.
That process starts with collecting some data, which weVe done. To measure natural
resources we looked at which countries are major oil producers. We classify a country
as a major oil producer if it exports more than forty thousand barrels per day per mil-
lion people. And for the political system we looked at which countries are considered
autocracies versus democracies by the Polity IV Project. Table 2.1 indicates how many
countries fit into each of the four possible categories: democracy and major oil pro-
ducer, democracy and not major oil producer, autocracy and major oil producer, and
autocracy and not major oil producer.

We can figure out if these two binary variables—being a major oil producer or not
and autocracyversus democracy—are correlated by making a comparison. For instance,
we could ask whether major oil producers are more likely to be autocracies than coun-
tries that arent major oil producers. Or, similarly, we could ask whether autocracies
are more likely to be major oil producers than democracies. If one of these statements
is true, the other must be true as well. And these comparisons tell us whether these
two features of the world—being a major oil producer and being an autocracy—tend to
occur together.

In table 2.1, oil production and autocracy are indeed positively correlated. Fifty-five
percent ofmajor oil producers are autocracies (^ = .55) while only about 20 percent of
countries that arent major oil producers are autocracies (^ ^ .20). Equivalently, 27.5
percent of autocracies are major oil producers (^ = .275), while only about 7 percent
of democracies are (^ ^ .07). In other words, major oil producers are more likely to
be autocracies than are countries that arent major oil producers, and then, necessarily,
autocracies are more likely to be major oil producers than democracies.

As a descriptive matter, we find this positive correlation interesting. It is also poten-
tially useful for prediction. Suppose there were some other countries outside our data
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Figure 2.1. Crime and temperature (in degrees Fahrenheit) in Chicago across days in 2018.

whose system ofgovernment we were uncertain of. Knowing whether or not they were
major oil producers would be helpful in predicting which kind of government they
likely have.

Such knowledge could even potentially be useful for causal inference. Perhaps new
oil reserves are discovered in a country and the State Department wants to know what
effect this is likely to have on the country's political system. This kind of data might
be informative about that causal question as well. Though, as well discuss in great
detail in chapter 9, we must be very careful when giving correlations this sort of causal
interpretation.

We can assess correlations even when our data are such that it is hard to make a table
ofall the possible combinations like we did above. Suppose, for example, that we want to
assess the relationship between crime and temperature in Chicago. We could assemble
a spreadsheet in which each row corresponds to a day and each column corresponds to
a feature of each day. We often call the rows observations and the features listed in the
columns variables. In this case, the observations are different days. One variable could
be the average temperature on that day as measured at Midway Airport. Another could
be the number ofcrimes reported in the entire city ofChicago on that day. Another still
could indicate whether the Chicago Tribune ran a story about crime on its front page on
that day. As you can see, variables can take values that are binary (front page story or
not), discrete but not binary (number of crimes), or continuous (average temperature).

We collected data like this for Chicago in 2018, and wed like to assess the correlation
between crime and temperature. But how can we assess the correlation between two
non-binary variables?

One starting point is to make a simple graph, called a scatter plot. Figure 2.1 shows
one for our 2018 Chicago data. In it, each point corresponds to an observation in our
data—here, that means each point is a day in Chicago in 2018. The horizontal axis of
our figure is the average temperature at Midway Airport on that day. The vertical axis
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Figure 2.2. A line of best fit summarizing the relationship between crime and temperature (in degrees
Fahrenheit) in Chicago across days in 2018.

is the number of crimes reported in the city on that day. So the location of each point
shows the average temperature and the amount of crime on a given day.

Just by looking at the figure, you can see that it appears that there is a positive corre-
lation between temperature and crime. Points to the left of the graph on the horizontal
axis (colder days) tend to also be pretty low on the vertical axis (lower crime days), and
days to right of the graph on the horizontal axis (warmer days) tend to also be pretty
high on the vertical axis (higher crime days).

But how can we quantify this visual first impression? There are actually many dif-
ferent statistics that we can use to do so. One such statistic is called the slope. Suppose
we found the line ofbestfit for the data. By bestfit, we mean, roughly, the line that min-
imizes how far the data points are from the line on average. (We will be more precise
about this in chapter 5.) The slope of the line of best fit is one way of describing the
correlation between these two continuous variables.

Figure 2.2 shows the scatter plot with that line added. The slope of the line tells us
something about the relationship between those two variables. If the slope is negative,
the correlation is negative. If the slope is zero, temperature and crime are uncorrelated.
If the slope is positive, the correlation is positive. And the steepness of the slope tells us
about the strength of the correlation between these two variables. Here we see that they
are positively correlated—there tends to be more crime on warmer days. In particular,
the slope is 3.1, so on average for every additional degree oftemperature (in Fahrenheit),
there are 3.1 more crimes.

Notice that how you interpret the slope depends on which variable is on the verti-
cal axis and which one is on the horizontal axis. Had we drawn the graph the other
way around (as in figure 2.3), we would be describing the relationship between the
same two variables. But this time, we would have learned that for every additional
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Figure 2.3. A line of best fit summarizing the relationship between temperature and crime in Chicago
across days in 2018.

reported crime, on average, the temperature is 0.18 degrees higher. The sign of the
slope (positive or negative) is the same regardless of which variable is on the horizon-
tal or vertical axis because changing which variable is on which axis does not change
whether they are positively or negatively correlated. But the actual number describing
the slope and its substantive interpretation—that is, what it says about the world—has
changed.

Fact or Correlation?

In order to establish whether a correlation exists, you must always make a compari-
son of some kind. For example, to learn about the correlation between temperature and
crime, we need to compare hot and cold days and see whether the levels of crime differ,
or alternatively, we can compare high- and low-crime days to see if their temperatures
differ. This means that to assess the correlation between two variables, we need to have
variation in both variables. For example, if we collected data only on days when the
average temperature was 0 degrees, we would have no way of assessing the correlation
between temperature and crime. And the same is true if we only examined days with
five hundred reported crimes.

With this in mind, lets pause to check how clearly you are thinking about what a
correlation is and how we learn about one. Don't worry if you arent all the way there
yet. Understanding whether a correlation exists turns out to be tricky. We are going to
spend all of chapter 4 on this topic. Nonetheless, it is helpful to do a preliminary check
now. So lets give it a try.

Think about the following statements. Which ones describe a correlation, and which
ones do not?
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1. People who live to be 100 years old typically take vitamins.
2. Cities with more crime tend to hire more police officers.
3. Successful people have spent at least ten thousand hours honing their craft.
4. Most politicians facing a scandal win reelection.
5. Older people vote more than younger people.

While each of these statements reports a fact, not all of those facts describe a cor-
relation—that is, evidence on whether two features of the world tend to occur together.
In particular, statements 1,3, and 4 do not describe correlations, while statements 2 and
5 do. Let s unpack this.

Statements 1, 3, and 4 are facts. They come from data. They sound scientific. And
ifwe added specific numbers to these statements, we could call them statistics. But not
all facts or statistics describe correlations. The key issue is that these statements do not
describe whether or not two features of the world tend to occur together—that is, they
do not compare across different values ofboth features of the world.

To get a sense of this, focus on statement 4:

Most politicians facing a scandal win reelection.

Two features of the world are discussed. The first is whether a politician is facing a
scandal. The second is whether the politician successfully wins reelection. The corre-
lation being hinted at is a positive correlation between facing a scandal and winning
reelection. But we don t actually learn from this statement of fact whether those two
features of the world tend to occur together—that is, we have not compared the rate of
reelection for those facing scandal to the rate of reelection for those not facing scandal.

We can assess this correlation, but not with the data described in statement 4. To
assess the correlation, we'd need variation in both variables—facing a scandal and
winning reelection. Just for fun, lets examine this correlation in some real data on
incumbent members of the U.S. House of Representatives seeking reelection between
2006 and 2012. Scott Basinger from the University of Houston has systematically col-
lected data on congressional scandals. Utilizing his data, let's see how many cases fall
into four relevant cases: members facing a scandal who were reelected, members fac-
ing a scandal who were not reelected, scandal-free members who were reelected, and
scandal-free members who were not reelected.

In table 2.2, we see that statement 4 is indeed a fact: 62 out of70 (about 89%) members
of Congress facing a scandal who sought reelection won. But we also see that most
members of Congress not facing a scandal won reelection. In fact, 1,192 out of 1,293
(about 92%) of these scandal-free members won reelection. By comparing the scandal-
plagued members to the scandal-free members, we now see that there is actually a slight
negative correlation between facing a scandal and winning reelection.

Table 2.2. Most members of Congress facing a scandal are reelected, but scandal
and reelection are negatively correlated.

Not Reelected

Reelected

Total

No Scandal

101

1,192

1,293

Scandal

8

62

70

Total

109

1,254

1,363
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We hope it is now clear why statement 4 does not convey enough information to
know whether or not there is a correlation between scandal and reelection. The prob-
lem is that the statement is only about politicians facing scandal. It tells us that more of
those politicians win reelection than lose. But to figure out if there is a correlation bet-
ween scandal and winning reelection, we need to compare the share ofpoliticians facing
a scandal who win reelection to the share of scandal-free politicians who win. Had only
85 percent of the scandal-free members of Congress won reelection, there would be a
positive correlation between scandal and reelection. Had 89 percent of them won, there
would have been no correlation. But since we now know the true rate of reelection for

scandal-free members was 92 percent, we see that there is a negative correlation. A sim-
ilar analysis would show that statements 1 and 3 also don t convey enough information,
on their own, to assess a correlation.

Statements 2 and 5 do describe correlations. Both statements make a comparison.
Statement 2 tells us that cities with more crime have, on average, larger police forces
than cities with less crime. And statement 5 tells us that older people tend to vote at
higher rates than younger people. In both cases, we are comparing differences in one
variable (police force size or voting rates) across differences in the other variable (crime
rates or age). This is the kind of information you need to establish a correlation.

As we said at the outset, don t worry ifyou feel confused. Thinking clearly about what
kind of information is necessary to establish a correlation, as opposed to just a fact, is
tricky. We are going to spend chapter 4 making sure you really get it.

What Is a Correlation Good For?

Now that we have a shared understanding of what a correlation is, let s talk about
what a correlation is good for. WeVe noted that correlations are perhaps the most impor-
tant tool of quantitative analysts. But why? Broadly speaking, it's because correlations
tell us what we should predict about some feature of the world given what we know
about other features of the world.

There are at least three uses for this kind ofknowledge: (1) description, (2) forecast-
ing, and (3) causal inference. Any time we make use of a correlation, we want to think
clearly about which of these three tasks we're attempting and what has to be true about
the world for a correlation to be useful for that task in our particular setting.

Description
Describing the relationships between features of the world is the most straightfor-

ward use for correlations.

Why might we want to describe the relationship between features of the world? Sup-
pose you were interested in whether younger people are underrepresented at the polls
in a particular election, relative to their size in the population. A description of the rela-
tionship between age and voting might be helpful. Figure 2.4 shows a scatter plot ofdata
on age and average voter turnout for the 2014 U.S. congressional election. In this figure,
an observation is an age cohort. For each year of age, the figure shows the proportion
of eligible voters who turned out to vote.

The figure also plots the line that best fits the data. This line has a slope of 0.006. In
other words, on average, for every additional year of age, the chances that an individual
turned out to vote in 2014 increases by 0.6 percentage points. So younger people do
indeed appear to be underrepresented, as they turn out at lower rates than older people.
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Figure 2.4. Voter turnout and age in the 2014 election.

This kind of descriptive analysis may be interesting in and of itself. It's important
to know that younger people were less likely than older people to vote in 2014 and
were therefore underrepresented in the electoral process. That relationship may inform
how you think about the outcome of that election. Moreover, knowledge of this cor-
relation might motivate you to further investigate the causes and consequences of the
phenomenon of younger people turning out at low rates.

Of course, this descriptive relationship need not imply that these younger people
will continue to vote at lower rates in future elections. So you cant necessarily use this
knowledge to forecast future voter turnout. And it also doesn't mean that these younger
people will necessarily become more likely to vote as they age. So you probably can't
interpret this relationship causally. This descriptive analysis just tells us that older peo-
ple were more likely to vote than younger people, on average, in the 2014 election. To
push the interpretation further, you'd need to be willing to make stronger assumptions
about the world, which we will now explore.

Forecasting
Another motivation for looking at correlations is forecasting or prediction—two

terms that we will use interchangeably. Forecasting involves using information from
some sample population to make predictions about a different population.

For instance, you might be using data on voters from past elections to make pre-
dictions about voters in future elections. Or you might be using the voters in one state
to make predictions about voters in another state. Suppose you're running an electoral
campaign, you have limited resources, and you're trying to figure out which ofyour sup-
porters you should target with a knock on the door reminding them to turn out to vote.
Ifyou were already highly confident that an individual was going to vote in the absence
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ofyour intervention, you wouldn't want to waste your volunteers' time by knocking on
that door. So accurate forecasting ofvoter turnout rates could improve the efficiency of
your campaign.

Correlations like the one above regarding age and voter turnout could be useful for
this kind offorecasting. Since age is strongly correlated with turnout, it might be a useful
variable for forecasting who is and is not already likely to vote. For instance, ifyou were
able to predict, on the basis of age, that some group ofvoters is virtually certain to turn
out even without your campaign efforts, you might want to focus your mobilization
resources on other voters.

To use the correlation between age and voter turnout for forecasting in this way, you
don t need to know why they are correlated. But, unlike if you just want to describe the
relationship between age and voter turnout in the 2014 election, ifyou want toforecast,
you need to be willing to make some additional assumptions about the world.

This raises two important concerns that you must think clearly about in order to use
correlation for forecasting responsibly. The first is whether the relationship you found in
your sample is indicative of a broader phenomenon or whether it is the result of chance
variation in your data. Answering this question requires statistical inference, which is the
topic of chapter 6. Second, even if you are convinced that you've found a real relation-
ship in your sample, you'll want to think about whether your sample is representative
of the population about which you are trying to make predictions. We will explore rep-
resentativeness in greater detail in our discussion of samples and external validity in
chapters 6 and 16.

Let's go back to using age and voter turnout from one election to make predictions
about another election. Doing so only makes sense if it is reasonable to assume that the
relationship between these two variables isn't changing too quickly. That is, the corre-
lation between age and voter turnout in, for example, the 2014 election would only be
useful for figuring out which voters to target in the 2016 election if it seems likely that
the relationship between age and turnout in 2016 will be more or less the same as the
relationship between age and turnout in 2014. Similarly, ifyou only had data on age and
voter turnout in the 2014 election for twenty-five states, you might use the correlation
between age and turnout in those states to inform a strategy in the other twenty-five
states. But this would only be sensible if you had reason to believe that the relationship
between age and turnout was likely to be similar in the states on which you did and did
not have data.

You'd also want to take care in making predictions beyond the range ofavailable data.
Our data tell us voter turnout rates for voters ages 18-88. Lines, however, go on forever.
So the line of best fit gives us predictions for any age. But we should be careful extrap-
olating our predictions about voter turnout to, say, 100-year-olds, since we don't have
any data for them, so we can't know whether the relationship described by the line is
likely to hold for them or not, even for the 2014 election. And we can be sure the line's
predictions for turnout by 10-year-olds won't be accurate—they aren't even allowed
to vote.

Relatedly, when using some statistic, like the slope of a line of best fit, to do predic-
tion, we need to think about whether the relationship is actually linear. If not, a linear
summary of the relationship might be misleading. We'll discuss this in greater detail
below.

It is worth noting that, in practical applications, it would be unusual to try to do
forecasting simply using the correlation between two variables. One might, instead, try
to predict voter turnout using its relationship with a host of variables like gender, race,
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income, education, and previous voter turnout. Well discuss such multivariate and
conditional correlations in chapter 5.

Using data for forecasting and prediction is a rapidly growing area for analysts in
policy, business, policing, sports, government, intelligence, and many other fields. For
instance, suppose you're running your city's public health department. Every time you
send a health inspector to a restaurant, it costs time and money. But restaurant viola-
tions of the health code do harm to your city's residents. Therefore, you would very
much like to send inspectors to those restaurants that are most likely to be in violation
of the health codes, so as not to waste time and money on inspections that don t end up
improving public safety. The more accurately you can forecast which restaurants are in
violation, the more effectively you can deploy your inspectors. You could imagine using
data on restaurants that did and did not violate health codes in the past to try to pre-
dict such violations on the basis of their correlation with other observable features of a

restaurant. Plausibly useful restaurant features might include Yelp reviews, information
about hospital visits for food poisoning, location, prices, and so on. Then, with these
correlations in hand, you could use future Yelp reviews and other information to predict
which restaurants are likely in violation of the health codes and target those restaurants
for inspection.

This example points to another tricky issue. The very act of using correlations for
prediction can sometimes make correlations that held in the past cease to hold in the
future. For instance, suppose the health department observes a strong correlation bet-
ween restaurants that are open twenty-four hours a day and health code violations. On
the basis of that correlation, they might start sending health inspectors disproportion-
ately to twenty-four-hour restaurants. A savvy restaurant owner who becomes aware of
the new policy might adapt to fool the health department, say closing from 2:00 to 3:00
a.m. every night. This small change in operating hours would presumably do nothing to
clean up the restaurant. But the manager would have gamed the system, rendering pre-
dictions based on past data inaccurate for the future. We'll discuss this general problem
of adaptation in greater detail in chapter 16.

Forecasting would also be useful to a policy maker who would like to know the
expected length ofan economic downturn for budgetary purposes, a banker who wants
to know the credit worthiness of potential borrowers, or an insurance company that
wants to know how many car accidents a potential client is likely to get in this year. The
managers of our beloved Chicago Bears would love to predict which college football
players could be drafted to increase the teams chances of winning a Super Bowl. But
given their past track record, we don t hold out much hope. Data can t work miracles.

It is also worth thinking about the potential ethical implications of using predic-
tions to guide behavior. For instance, research finds that consumer complaints about
cleanliness in online restaurant reviews are positively correlated with health code vio-
lations. This is potentially useful predictive information—governments could use data
collected from review sites to figure out where to send restaurant inspectors. In response
to such findings, an article in The Atlantic declared, "Yelp might clean up the restau-
rant industry." But a study by Kristen Altenburger and Daniel Ho shows that online
reviewers are biased against Asian restaurants—comparing restaurants that received
the same score from food-safety inspectors, they find that reviewers were more likely
to complain about cleanliness in the Asian restaurants. This means that ifgovernments
make use of the helpful predictive correlation between online reviews and health code
violations, it will inadvertently discriminate against Asian restaurants by disproportion-
ately targeting them for inspection. Do you want your government to make use of such
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information? Or are there ethical or social costs of targeting restaurants for inspection
in an ethnically biased way that outweigh the benefits ofmore accurate predictions? We
will return to some of these ethical issues at the end of the book.

Causal Inference

Another reason we might be interested in correlations is to learn about causal rela-
tionships. Many of the most interesting questions that quantitative analysts face are
inherently causal. That is, they are about how changing some feature ofthe world would
cause a change in some other feature of the world. Would lowering the cost of col-
lege improve income inequality? Would implementing a universal basic income reduce
homelessness? Would a new marketing strategy boost profits? These are all causal ques-
tions. As we 11 see throughout the book, using correlations to make inferences about
causal relationships is common. But it is also fraught with opportunities for unclear
thinking. (Understanding causality will be the subject of the next chapter.)

Using correlation for causal inference has all the potential issues we just discussed
when thinking about using correlation for prediction and there are new issues. The key
one is that correlation need not imply causation. That is, a correlation between two
features of the world doesnt mean one of them causes the other.

Suppose you want to know the effect of high school math training on subsequent
success in college. This is an important question ifyou're a high school student, a parent
or counselor of a high school student, or a policy maker setting educational standards.
Will high school students be more likely to attend and complete college if they take
advanced math in high school?

As it turns out, the correlation between taking advanced math and completing col-
lege is positive and quite strong—for instance, people who take calculus in high school
are much more likely to graduate from college than people who do not. And the cor-
relation is even stronger for algebra 2, trigonometry, and pre-calculus. But that doesnt
mean that taking calculus causes students to complete college.

Ofcourse, one possible source ofthis correlation is that calculus prepares students for
college and causes them to become more likely to graduate. But that isn't the only pos-
sible source of this correlation. For instance, maybe, on average, kids who take calculus
are more academically motivated than kids who don t. And maybe motivated kids are
more likely to complete college regardless of whether or not they take calculus in high
school. If that is the case, we would see a positive correlation between taking calculus
and completing college even ifcalculus itselfhas no effect on college completion. Rather,
whether a student took calculus would simply be an indirect measure of motivation,
which is correlated with completing college.

What s at stake here? Well, if the causal story is right, then requiring a student to
take calculus who otherwise wouldn't will help that student complete college by offering
better preparation. But if the motivation story is right, then requiring that student to
take calculus will not help with college completion. In that story, calculus is just an
indicator of motivation. Requiring a student to take calculus does not magically make
that student more motivated. It could even turn out that requiring that student to take
calculus might impose real costs—in terms of self-esteem, motivation, or time spent on
other activities—without any offsetting benefits.

The exact mistake we just described was made in a peer-reviewed scientific article.
The researchers compared the college performance ofpeople who did and did not take a
variety of intensive high school math courses. On the basis ofa positive correlation, they
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suggested that high school counselors "use the results of this study to inform students
and their parents and guardians of the important role that high school math courses
play with regard to subsequent bachelors degree completion." That is, they mistook
correlation for causation. On the basis of these correlations, they recommended that
students who were not otherwise planning to do so should enroll in intensive math
courses to increase their chances of graduating from college.

We'll return to the problem ofmistaking correlation for causation in part 3. For now,
you should note that, although purported experts do it all the time, in general, it is
wrong to infer causality from correlations.

Measuring Correlations
There are several common statistics that can be used to describe and measure the

correlation between variables. Here we discuss three of them: the covariance, the corre-
lation coefficient, and the slope of the regression line. But before going through these
three different ways of measuring correlations, we need to talk about means, vari-
ances, and standard deviations—statistics that help us summarize and understand
variables.

Mean, Variance, and Standard Deviation

Let s focus on our Chicago crime and temperature data. Recall that in this data set,
each observation is a day in 2018. And for each day we observe two variables, the num-
ber of reported crimes and the average temperature as measured in degrees Fahrenheit
at Midway Airport. We aren't going to reproduce the entire data set here, since it has
365 rows (one for each day of 2018). Table 2.3 shows what the data looks like for the
month ofJanuary. For the remainder ofthis discussion, we will treat the days ofJanuary
2018 as our population of interest.

For any observation i, call the value of the crime variable crimei and the value of the
temperature variable temperaturej. In our data table, / can take any value from 1 through
31, corresponding to the thirty-one days of January 2018. So, for instance, the temper-
ature on January 13 was temperature^ = 12.3, and the number of crimes reported on
January 24 was crime2\ = 610.

A variable has a distribution—a description of the frequency with which it takes dif-
ferent values. We often want to be able to summarize a variables distribution with a few
key statistics. Here we talk about three of them.

It will help to have a little bit ofnotation. The symbol J] (the upper-case Greek letter
sigma) denotes summation. For example, X!;=i crime/ is the sum of all the values of the
crime variable from day 1 through day 31. To find it, you take the values of crime for
day 1, day 2, day 3, and so on through 31 and sum (add) them together. That is, you add
up crimei = 847 and crime2 = 555 and crimes = 568 and so on through crime3i = 708.
You find these specific values for the crime variable on each day by referring back to the
data in table 2.3.

Now we can calculate the mean of each variables distribution. (Sometimes this is
just called the mean of the variable, leaving reference to the distribution implicit). The
mean is denoted by /x (the Greek letter mu). The mean is just the average. We find it by
summing the values of the observations (which we now have convenient notation for)
and dividing by the number of observations. For January 2018, the means of our two
variables are



Table 2.3. Average temperature at Chicago Midway
Airport and number of crimes reported in Chicago
for each day of January 2018.

Day

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Temperature (°F)

-2.7

-0.9

14.2

6.3

5.4

7.5

25.4

33.9

30.1

44.9

51.7

21.6

12.3

15.7

16.8

14.6

14.7

25.6

34.8

40.4

42.9

48.9

32.3

29.2

35.5

46.0

45.6

35.0

25.2

24.7

37.6

Crimes

847

555

568

600

660

585

535

618

653

709

698

705

617

563

528

612

644

621

707

724

716

722

716

610

640

759

754

668

650

632

708

Mean 26.3 655.6

Variance 220.3 5183.0

Standard deviation 14.8 72.0
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J23iLi crime,- 847 + 555 + • • • + 708 ^
berime = ^ = ^ = 655-6

and

_ Y$Li temperature, _ -2.7 + -0.9 H + 37.6 _
Mtemperature — r: — r: — 26.3.

A second statistic of interest is the variance, which we denote by a2 (the lower-case
Greek letter sigma, squared). We'll see why it is squared in a moment. The variance is a
way of measuring how far from the mean the individual values of the variable tend to
be. You might even say that the variance measures how variable the variable is. (You can
also think of it, roughly, as a measure of how spread out the variables distribution is.)

Here's how we calculate the variance. Suppose we have some variable X (like crime or
temperature). For each observation, calculate the deviation of that observation's value
ofX from the mean ofX. So, for observation /, the deviation is the value ofX for obser-
vation i (Xj) minus the mean value ofX across all observations (/>ix)—that is, X,- — /zx-
On January 13,2018, the temperature was 12.3 degrees Fahrenheit. The mean temper-
ature in January 2018 was 26.3 degrees Fahrenheit. So January 13's deviation from the
January mean was 12.3 — 26.3 = —14. That is, January 13, 2018, was fourteen degrees
colder than the average day in January 2018. By contrast, the deviation of January 23,
2018, was 32.3 — 26.3 = 6. On January 23, it was six degrees warmer than on the average
day in January 2018.

Note that these deviations can be positive or negative since observations can be larger
or smaller than the mean. But for the purpose of measuring how variable the observa-
tions are, it doesn't matter whether any given deviation is positive or negative. We just
want to know how far each observation is from the mean in any direction. So we need to
transform the deviations into positive numbers that just measure the distance from the
mean rather than the sign and distance. To do this, we could look at the absolute value
of the deviations. But for reasons we'll discuss later, we typically make the deviations
positive by squaring them instead. The variance is the average value of these squared
deviations. So, if there are N observations (in our data, N = 31) the variance is

2 EfU'-Mx)2
x N

For the two variables in our data, the variances are

2 =E?=i(crime/-Mcrime)2
crime 3^

(847 - 655.6)2 + (555 - 655.6)1 + • • • + (708 - 655.6)2
= « 5183

31

and

2 _ £f=i (temperature,- - ^temperature)2
^temperature— ^

(-2.7 - 26.3)2 + (-0.9 - 26.3)2 + • • • + (37.6 - 26.3)2
= — « 220.3.

31
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By focusing on the average of the squared deviations rather than on the average of
the absolute value ofthe deviations, the variance is putting more weight on observations
that are farther from the mean. If the richest person in society gets richer, this increases
the variance in wealth more than if a moderately rich person gets richer by the same
amount. For example, suppose the average wealth is 1. If someone with a wealth of 10
gains 1 more unit ofwealth, the variance increases by 10 ^9 = jj. But if someone with
a wealth of 100 gains one more unit ofwealth, the variance increases by 10° ^ " = ^r.

The variance is a fine measure of how variable a variable is. But since we've squared
everything, there is a sense in which it is not measured on the same scale as the variable
itself. Sometimes we want a measure ofvariability that is on that same scale. When that
is the case, we use the standard deviation, which is just the square root of the variance.
We denote the standard deviation by a (the lower-case Greek letter sigma):

„_..__ .':?«-«)>
N

The standard deviation—which is also a measure of how spread out a variables dis-
tribution is—roughly corresponds to how far we expect observations to be from the
mean, on average. Though, as we've noted, compared to the average absolute value of
the deviations, it puts extra weight on observations that are farther from the mean.

For the two variables in our data, the standard deviations are

_ /E?=i(crime/- berime)2
"crime — v ?\

1(847 - 655.6)1 + (555 - 655.6)1 + • • • + (708 - 655.6)1 ^
V 31

and

_ / £f=i (temperature,- - ^temperature)2
^temperature — v r;

(-2.7 - 26.3)2 + (-0.9 - 26.3)2 + • • • + (37.6 - 26.3)2
= J « 15.1.V 31

Now that we understand what a mean, variance, and standard deviation are, we can
discuss three important ways in which we measure correlations: the covariance, the
correlation coefficient, and the slope of the regression line.

Covariance

Suppose we have two variables, like crime and temperature, and we want to measure
the correlation between them. One way to do this would be to calculate their covariance
(denoted cov). To keep our notation simple, lets call those two variables X and Y. And
lets assume we have a population of size N.
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Here's how you calculate the covariance. For every observation, calculate the
deviations—that is, how far the value ofX is from the mean ofX and how far the value
of Y is from the mean of Y. Now, for each observation, multiply the two deviations
together, so you have (X; — /xx)(T; — /xy) for each observation i. Call this the product
of the deviations. Finally, to find the covariance ofX and 7, calculate the average value
of this product:

cov(x.r)=^-«-»)<r'-")
N

Lets see that the covariance is a measure of the correlation. Consider a particu-
larly strong version of positive correlation: suppose whenever X is bigger than average
(X/ — [ix > 0), Y is also bigger than average (Yj — /xy > 0), and whenever X is smaller
than average (X; — /xx < 0), Y is also smaller than average (Yj — /xy < 0). In this case,
the product of the deviations will be positive for every observation—either both devi-
ations will be positive, or both deviations will be negative. So the covariance will be
positive, reflecting the positive correlation. Now consider a particularly strong version
of negative correlation: suppose whenever X is bigger than average, Y is smaller than
average, and whenever X is smaller than average, Y is bigger than average. In this case,
the product of the deviations will be negative for every observation—one deviation is
always negative and the other always positive. So the covariance will be negative, reflect-
ing the negative correlation. Ofcourse, neither of these extreme cases has to hold. But if
a larger-than-average X usually goes with a larger-than-average 7, then the covariance
will be positive, reflecting a positive correlation. If a larger-than-average X usually goes
with a smaller-than-average Y, then the covariance will be negative, reflecting a nega-
tive correlation. And if the values ofX and Y are unrelated to each other, the covariance
will be zero, reflecting the fact that the variables are uncorrelated.

Correlation Coefficient

While the meaning of the sign of the covariance is clear, its magnitude can be a
bit hard to interpret, since the product of the deviations depends on how variable the
variables are. We can get a more easily interpretable statistic that still measures the
correlation by accounting for the variance of the variables.

The correlation coefficient (denoted corr) is simply the covariance divided by the
product of the standard deviations:

cov(X,7)
corr (X, Y) =

OxOy

When we divide the covariance by the product of the standard deviations, we are nor-
malizing things. That is, the covariance could, in principle, take any value. But the
correlation coefficient always takes a value between —1 and 1. A value of 0 still indi-
cates no correlation. A value of 1 indicates a positive correlation and perfect linear
dependence—that is, if you made a scatter plot of the two variables, you could draw a
straight, upward-sloping line through all the points. A value of — 1 indicates a negative
correlation and perfect linear dependence. A value between 0 and 1 indicates positive
correlation but not a perfect linear relationship. And a value between — 1 and 0 indicates
negative correlation but not a perfect linear relationship.
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The correlation coefficient is sometimes denoted by the letter r. And we also some-
times square the correlation coefficient to compute a statistic called r-squared or r2.
This statistic always lies between 0 and 1.

One potentially attractive feature of the r2 statistic is that it can be interpreted as a
proportion. It's often interpreted as the proportion of the variation in Y explained by
X or, equivalently, the proportion of X explained by Y. As well discuss in later chap-
ters, the word explained can be misleading here. It doesn't mean that the variation in
X causes the variation in Y or vice versa. It also doesn't account for the possibility that
this observed correlation might have arisen by chance rather than reflecting a genuine
phenomenon in the world.

Slope of the Regression Line
One potential concern with the correlation coefficient and the r2 statistic is that

they don't tell you anything about the substantive importance or size of the relation-
ship between X and Y. Suppose our two variables of interest are crime and temperature
in Chicago. A correlation coefficient of .8 tells us that there is a strong, positive relation-
ship between the two variables, but it doesn't tell us what that relationship is. It could be
that every degree of temperature corresponds with .1 extra crimes, or it could be that
every degree of temperature corresponds with 100 extra crimes. Both are possible with
a correlation coefficient of .8. But they mean very different things.

For this reason, we don't spend much time thinking about these ways of measuring
correlation. We typically focus on the slope of a line of best fit, as we've already shown
you. Moreover, we tend to focus on one particular way of defining which line fits best.
Remember, a line of best fit minimizes how far the data points are from the line on
average. We typically measure how far a data point is from the line with the square of
the distance from the data point to the line (so every value is positive, just like with
squaring deviations). We focus on the line of best fit that minimizes the sum of these
squared distances (or the sum ofsquared errors). This particular line ofbest fit is called
the ordinary least squares (OLS) regression line, and usually, when someone just says
regression line, they mean OLS regression line. All the lines ofbest fit we drew earlier in
this chapter were OLS regression lines.

The slope of the regression line, it turns out, can be calculated from the covariance
and variance. The slope of the regression line (also sometimes called the regression
coefficient) when Y is on the vertical axis and X is on the horizontal axis is

cov(X,7)

This number tells us, descriptively, how much Y changes, on average, as X increases by
one unit. Had we divided by <jy instead ofo\> then it would tell us how much X changes,
on average, as Y increases by one unit. As we've seen, those can be different numbers.

We'll spend a lot more time on regression lines in chapters 5 and 10.

Populations and Samples
Before moving on, there is one last issue that is worth pausing to highlight. We can

think about each ofthe statistics we've talked about—the mean, the variance, the covari-
ance, the correlation coefficient, the slope of the regression line—in two ways. There
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is a value of each of those statistics that corresponds to the whole population we are
interested in. And there is a value of those statistics that corresponds to the sample of
data we might happen to have. Either value can be of interest, but they can be impor-
tantly different. We have avoided that issue here by focusing on a case where our data
and our population are the same—we have crime and temperature for every day in Jan-
uary 2018, which we ve treated as our population and our sample. But this wont always
be the case. For instance, we might have been interested in the relationship between
crime and temperature in January over many years but only had a sample of data for
the year 2018. This would give rise to all sorts of questions about what we can learn
about January 2019 or January 1918 from our 2018 data. We will revisit these issues in
chapter 6.

Straight Talk about Linearity
All of the various ways of measuring correlations that we have discussed focus on

assessing linear relationships between variables. We will delve into this topic in more
detail later on, especially in chapter 5 when we return to the topic of age and voter
turnout in the context of our discussion of regression. But for now we will note that
linear relationships are often interesting and important, but not all interesting and
important relationships are linear. Consider, for example, the two possible relationships
between the variables X and Y illustrated in figure 2.5.

As the regression lines make clear, in both these figures, the correlation between X
and Y is 0. But these relationships are clearly different, just not in a way that is captured
by the regression line.

In the left panel, there is no correlation between X and Y and there also doesn't seem
to be any interesting relationship ofany kind. You really cant predict the value of Y from
X or vice versa. In the right panel, there is also no correlation between X and Y—on
average, high values ofX don t tend to occur with high values of 7, nor do low values of
X tend to occur with low values of Y. But there is certainly a relationship between these
two variables. In fact, X is quite useful in predicting Y in the right panel. This teaches
us a lesson. Clear thinking about data requires more than just computing correlations.
Among other things, it is important to look at your data (e.g., with scatter plots like
these), lest you miss interesting nonlinear relationships.

There are lots of statistical approaches for dealing with non-linearity, and we 11 dis-
cuss some of them in this book. But, as it turns out, linear tools for describing data can
still be useful, even when the variables are related in a non-linear way. For instance,
in the right panel of figure 2.5, there is a strong negative correlation between X and
Y when X is less than 0 and a strong positive correlation between X and Y when X is
greater than 0. So one thing we could do with linear tools is draw two lines of best fit,
one for when X is less than 0 and one for when it is greater than 0. That would look like
figure 2.6.

Another thing we could do is transform one of the variables so that the relationship
looks more linear. For instance, in our example, although there is no correlation bet-
ween Y and X, there is a strong linear relationship between Y and X2. In figure 2.7 we
plot X2 on the horizontal axis and Y on the vertical axis. When we transform X into
X2, negative values of X become positive values of X2 (e.g., —1 becomes 1), while the
positive values stay positive (e.g., 1 stays 1). So it is as if we are folding the figure in
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Figure 2.5. Zero correlation can mean many things.
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Figure 2.6. Fitting two separate regression lines to a non-linear relationship.

on itself at X = 0, and then were twisting and stretching it a little so that X becomes X2
(0 stays at 0,1 stays at 1, .5 becomes .52 = .25, and so on).

With this transformation, our regression line shows a strong positive relationship
between Y and X2, and we can do a good job describing the relationship between these
variables with our linear tools.

Its also worth pointing out that describing the relationship between two variables
with a linear function is always appropriate when we're dealing with binary variables.
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Figure 2.7. Creating a linear relationship by transforming a variable.

For example, lets return to the correlation between oil production and autocracy.
Figure 2.8 plots the data. The scatter plot is not very interesting or informative because
there are only four possible combinations of our two variables. Accordingly, all of the
data points lie on one of those four dots (although we have attempted to make the scat-
ter plot more informative by making the size of the dots proportional to the number of
countries at each set ofvalues). However, we can still plot the slope ofthe regression line.
The slope of this line is simply the proportion ofmajor oil-producing countries that are
autocracies minus the proportion ofnon-major oil-producing countries that are autoc-
racies. In other words, we learn the same thing from this picture that we learned from
the table at the outset of the chapter.

One reason that we focus so much on linear relationships is that even non-linear
relationships tend to look approximately linear if you zoom in enough—that is, if you
are interested in a sufficiently small range of values of the variable X. We must be par-
ticularly cautious about extrapolating when we zoom in like that. As we move farther
from the range of data in which the relationship is approximately linear, our descrip-
tions of the relationship (and, by extension, any predictions we make) will be less and
less accurate.

To think more about the dangers ofextrapolation, consider an example. Political ana-
lysts find that the incumbent party in U.S. presidential elections tends to get about 46
percent ofthe vote when there is 0 income growth, and an extra 3.5 percentage points of
the vote for every percentage point increase in income growth. Of course, theyVe mea-
sured this relationship using data on income growth levels that have actually occurred.
Does this mean that we should predict incumbent vote share will be 81 percent ifincome
growth is 10 percent? Probably not. And the incumbents vote share definitelywould not
be 116 percent if income growth were 20 percent—that's impossible! But that doesnt
mean a linear description of the data isn't useful for the range of income growths that
we actually experience.
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3

Major oil producer

Figure 2.8. A regression line through data with a binary variable gives the difference in means.

Wrapping Up
Correlations form the foundation of data analysis. They are the way we talk about

relationships between features ofthe world. And the various statistics by which we mea-
sure correlations—like the covariance, correlation coefficient, or slope of the regression
line—are the way we quantify those relationships.

As we've discussed, correlations can be used for a variety of purposes including
description, forecasting, and causal inference. In chapter 3, we turn our focus to causal-
ity in order to understand what it means and start to get a handle on the aphorism
with which we began—correlation need not imply causation. However, a fuller under-
standing of the relationship between correlation and causation will have to wait until
chapter 9.

Key Terms
• Correlation: The correlation between two features of the world is the extent to

which they tend to occur together.
• Positively correlated: When higher (lower) values ofone variable tend to occur

with higher (lower) values of another variable, we say that the two variables are
positively correlated.

• Negatively correlated: When higher (lower) values of one variable tend to
occur with lower (higher) values of another variable, we say that the two
variables are negatively correlated.

• Uncorrelated: When there is no correlation between two variables, meaning
that higher (lower) values of one variable do not systematically coincide with
higher or lower values of the other variable, we say that they are uncorrelated.

• Line ofbest fit: A line that minimizes how far data points are from the line on
average, according to some measure of distance from data to the line.
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• Mean (ji): The average value of a variable.
• Deviation from the mean: The distance between an observations value for

some variable and the mean of that variable.
• Variance (a2): A measure of how variable a variable is. It is the average of the

square of the deviations from the mean.
• Standard deviation (a): Another measure of how variable a variable is. The

standard deviation is the square root of the variance. It has the advantage of
being measured on the same scale as the variable itselfand roughly corresponds
to how far the typical observation is from the mean (though, like the variance,
it puts more weight on observations far from the mean).

• Covariance (cov): A measure of the correlation between two variables. It is
calculated as the average of the product of the deviations from the mean.

• Correlation coefficient (r): Another measure of the correlation between two
variables. It is calculated as the covariance divided by the product of the vari-
ances. The correlation coefficient takes a value between —1 and 1, with —1
reflecting perfect linear negative dependence, 0 reflecting no correlation, and
1 reflecting perfect linear dependence.

• r2: The square of the correlation coefficient. It takes values between 0 and 1 and
is often interpreted as the proportion of the variation in one variable explained
by the other variable. But we have to pay careful attention to what we mean by
"explained." Importantly, it doesn't mean that variation in one variable causes
variation in the other.

• Sum of squared errors: The sum of the square of the distance from each data
point to a given line of best fit. This gives us one way of measuring how well
the line fits/describes/explains the data.

• OLS regression line: The line that best fits the data, where bestfits means that
it minimizes the sum of squared error.

• Slope of a line: The slope of a line tells you how much the line changes on the
vertical axis as you move one unit along the horizontal axis. So a completely
horizontal line has a slope of 0. An upward sloping 45-degree line has a slope
1, a downward sloping 45-degree line has a slope of — 1, and so on.

• Slope of the regression line or regression coefficent: The slope of the regres-
sion line describes how the value of one variable changes, on average, when
the other variable changes. The slope of the regression line is the covariance of
two variables divided by the variance of one of them, sometimes also called the
regression coefficient.

Exercises

2.1 Consider the following three statements. Which ones describe a correlation,
and which ones do not? Why?
(a) Most professional data analysts took a statistics course in college.
(b) Among Major League Baseball players, pitchers tend to have lower-

than-average batting averages. (We 11 learn why this is the case in
chapter 16.)

(c) Whichever presidential candidate wins Ohio tends to win the Electoral
College.
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2 Consider the last statement about Ohio and presidential elections. Do you
think it's useful for description? Forecasting? Causal inference? Why or why
not?

3 The table below shows some data on which countries are major oil produc-
ers and which countries experienced a civil war between 1946 and 2004. Are
being a major oil producer and experiencing civil war positively correlated,
negatively correlated, or uncorrected? Explain your answer.

Civil War No Civil War

Oil Producer 7 12

Non-Oil Producer 55 94

4 The table below provides data about height and income among American
men, taken from the National Longitudinal Survey. It is fine to use a calculator
for this question, but don t use a spread sheet or statistical software to compute
the answers.

Height (in) Average Income $

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

39,428

35,087

40,575

39,825

55,508

56,377

59,746

66,699

59,787

66,176

79,202

70,432

77,975

72,606

71,063

80,330

(a) Calculate the mean of each of these variables.
(b) Calculate the variance of each of these variables.
(c) Calculate the standard deviation of each of these variables.
(d) Calculate the covariance between these two variables.
(e) Calculate the correlation coefficient for these variables.
(f) Are the two variables positively correlated, negatively correlated, or

uncorrelated? Explain your answer.
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Readings and References
For more on the corruption data we discussed take a look at

Scott J. Basinger. 2013. "Scandals and Congressional Elections in the Post-Watergate
Era." Political Research Quarterly 66(2):385-398.

For more information about the Polity IV Project, which classifies countries as
democratic or autocratic, see https://www.systemicpeace.org/polity/polity4.htm.

We discussed two articles on using online reviews to predict health code violations:
Emily Badger. 2013. "How Yelp Might Clean Up the Restaurant Industry." The Atlantic.
July/August.
Kristen M. Altenburger and Daniel E. Ho. 2018. "When Algorithms Import Private
Bias into Public Enforcement: The Promise and Limitations of Statistical Debiasing
Solutions." Journal ofInstitutional and Theoretical Economics 174(1):98-122.

The study of advanced math and college completion is.
Jerry Trusty and Spencer G. Niles. 2003. "High-School Math Courses and Completion
of the Bachelors Degree." Professional School Counseling 7(2):99-107.

If you are interested in examples of the growing use of forecasting and prediction in
addressing important policy problems, have a look at

Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer. 2015. "Pre-
diction Policy Problems." American Economic Review 105(5):491-95.



CHAPTER 3

Causation: What Is It and
What Is It Good For?

What You'll Learn

• A causal effect is a change in some feature of the world that would result from
a change to some other feature of the world.

• Assessing causal relationships is crucial for policy and decision making.
• "What effect did this have on the outcome?" is a more conceptually clear question

than "What caused the outcome?"

• Causal relationships are about comparisons of counter/actual worlds. As a
result, they are fundamentally unobservable. But, in certain situations, we can
learn about them from data.

Introduction

As we saw in chapter 2, knowledge of correlations is useful for many purposes.
Among the most important, but also most vexing, purposes is learning about causal
relationships.

We make claims about causal knowledge all the time. I did poorly on the test because
I didn't get enough sleep. Going to college will improve my future job prospects. A polit-
ical candidate lost an election because of an attack ad. Violent crime is down because

of a new policing strategy.
Thinking clearly about whether a causal relationship exists is perhaps the most

important conceptual challenge for learning to use information to make better deci-
sions. This is because causal knowledge is the key to understanding how your decisions
and actions affect the world around you. Ifyou propose a new tax policy, test-prep strat-
egy, exercise plan, or advertising campaign, you're doing so not because you think it is
correlated with better outcomes. Rather, you must believe that enacting your proposal
will actually cause better outcomes.

Our goal in this chapter is to clarify exactly what we mean when we talk about causal
relationships. Causality is a deep and perplexing topic to which much attention has been
paid by scholars from many different fields. We wont be able to resolve all the thorny
philosophical questions here. Instead we've set more modest goals. First, we want to
make sure we are all on the same page by defining how we will use causal language for
the duration of this book. Then we will explain why the notion of causality we adopt
is a particularly valuable one. Finally, we will discuss some other approaches to talking
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about causality and explain why, from our point of view, they are less helpful than the
one we adopt.

What Is Causation?

When we talk about causation, were talking about the effect ofone thing on another.
In non-technical terms, a causal effect is a change in some feature ofthe world that would
result from a change to some other feature of the world. So, for instance, we would say
that the tax rate has a causal effect on government revenue ifchanging the tax rate would
lead to a change in government revenue.

WeVe defined the notion of an effect in non-technical terms, so you might not have
noticed that we actually slipped in a bit of philosophy. What do we mean by would
result? After all, the world is as it is. Where did this change in some other feature of the
world come from?

That's a good question. In fact, our definition of a causal effect relies on a thought
experiment about which we need to be explicit. Lets start with an example.

The movie star Gwyneth Paltrow runs a company called Goop that promotes stick-
ers, called Body Vibes, that are supposed to promote health, wellness, and good skin.
Here's what the Goop website says about Body Vibes:

Human bodies operate at an ideal energetic frequency, but everyday stresses and
anxiety can throw off our internal balance, depleting our energy reserves and
weakening our immune systems. Body Vibes stickers come pre-programmed to
an ideal frequency, allowing them to target imbalances. While you're wearing
them—close to your heart, on your left shoulder or arm—they'll fill in the defi-
ciencies in your reserves, creating a calming effect, smoothing out both physical
tension and anxiety. The founders, both aestheticians, also say they help clear skin
by reducing inflammation and boosting cell turnover.

Suppose you paid the required six dollars per sticker because you really want clear
skin. But then your friends started making fun of you for being a sucker. In defending
yourself, you'd want to claim that Body Vibes really do have an effect on the clarity of
your skin. But what, exactly, would you mean by that claim?

Here's a way of thinking about this. Imagine an alternative world where, at the exact
moment you went to stick on your Body Vibes stickers, unbeknownst to you, one of
your friends replaced them with identical-looking stickers that cost ten cents instead
of six dollars, but which hadn't been "pre-programmed to an ideal frequency." If your
skin clarity would be worse in that alternative world, then we would say that Body Vibes
have a positive effect on your skin clarity. If your skin clarity would be the same in that
alternative world, we'd have to conclude that Body Vibes don't have the claimed effect
on skin clarity And ifyour skin clarity would actually be better in that alternative world,
we'd conclude Body Vibes have a negative effect.

We can extend this thought experiment. There's nothing particularly special about
the real world. Once we're already thinking about one alternative world, we might as
well think about two. For instance, we could think about the effect of ten-cent stickers
compared to magical crystals, even if you've never tried either of those approaches to
skin care. We just have to compare two make-believe worlds: one where your friends
secretly stuck stickers on your upper left shoulder near your heart, and another where
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they snuck crystals into your pockets. These kinds of comparisons are called counter-
factual thought experiments because at least one of the worlds we are comparing isn't
the real, factual world—it's in our imaginations. The comparison of outcomes in such
a thought experiment is a counterfactual comparison.

We can now make sense ofthe phrase would result in our definition ofa causal effect.
It refers to a counterfactual comparison between the outcome in the actual world and
the outcome in a counterfactual world that is identical to the actual world up until the
point where the feature of the world claimed to have a causal effect is changed.

This idea ofcounterfactuals is philosophically subtle. So, to help us make sure we are
thinking clearly, we are going to introduce a mathematical framework for represent-
ing counterfactuals called potential outcomes. Using the potential outcomes framework
requires some notation, but it isn't too complicated. And once you master the notation,
you will have a much deeper understanding of what causality really is. So let's give it
a shot.

Potential Outcomes and Counterfactuals

We are interested in the effect of some treatment (say, Body Vibes) on some outcome
(say, skin health). Let's call the treatment T. It is a binary variable, taking a value of 0 or
1. If T = 1 for some person, that means the person received the Body Vibes treatment. If
T = 0 for some person, that means the person didn't receive the Body Vibes treatment.
We sometimes say that a unit (here, a person) with T = 1 is treated and a unit with T = 0
is untreated, although it's often arbitrary what we call treated and what we call untreated
(e.g., we could just as easily talk about the effect of not wearing Body Vibes).

Similarly, let's refer to the outcome we are interested in as Y. In our example, Y
describes a person's skin health. In a metaphysical sense, there is some level of skin
health that each individual would have had if they'd used Body Vibes and some level of
skin health they would have had if they hadn't used Body Vibes. These are that person's
potential outcomes. However, at any given moment, we only ever get to observe one
of these—each person is either using or not using Body Vibes. Nonetheless, thinking
about both potential outcomes helps us to think clearly about counterfactuals:

Yu = outcome for unit i if T = 1

Yoi = outcome for unit i if T = 0

The effect ofwearing Body Vibes on person f's skin health is just the difference in f's
skin health with and without Body Vibes. In our potential outcomes notation, it is

Effect of Body Vibes on /'s Skin Health = Yu — Yqj.

Table 3.1 makes this more concrete. We observe ten individuals. For each individual,
we observe whether they received Body Vibes and whether their skin is clear. If person
/ received Body Vibes, their treatment status is T/ = 1; if they did not, their treatment
status is Tj = 0. And ifperson i had treatment status T, we write their outcome as Yji = 1
if their skin is clear and Yn = 0 if their skin is not clear.

The actual outcome for each individual is bold in the table. Individuals 1-5 received

Body Vibes, so their actual outcome is Yu- The table also tells us what these individ-
uals' outcomes would have been if they hadn't received Body Vibes, Yq/- However, in
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Table 3.1. Potential outcomes for skin health with and without Body Vibes. For each individual,
the actual outcome that we can observe is in bold type. The counterfactual outcome that we do
not observe is in regular type.

Skin Health Skin Health Treatment Effect

with Body Vibes without Body Vibes for Individual i
Yu Y0i Yu - Y0i

1 0

0 0

0 0

1 0

1 0

0 0

0 0

1 0

1 0

0 0

the actual world, no one can observe these counterfactual outcomes, since they don t
actually occur. Individuals 6-10 do not receive Body Vibes. So their actual outcome is
Yoi. Again, although the table tells us what their outcomes would have been if theyd
received Body Vibes, Yu, these counterfactual outcomes are not observed in the actual
world.

Because the table tells us the potential outcomes in the actual and counterfactual
worlds, we can find the treatment effect ofBody Vibes for each individual by calculating
Y\i — Yqj. Doing so reveals that Body Vibes don't actually have any effect on the skin
health ofany individual. Individuals 1,4,5,8, and 9 all have clear skin. But for all ofthese
individuals, that would be true whether or not they received Body Vibes. Individuals 2,
3,6, 7, and 10 all have unclear skin. Again, however, this would be true with or without
Body Vibes. Importantly, as we will come back to later, this absence of a causal effect
can t actually be observed in the world because we only observe the actual outcome for
each individual, not the potential outcome in the counterfactual world where they had
a different treatment status.

We say that causality is about counterfactual comparisons because we can only
observe, at most, one of the two quantities, Yu or Yqj, for any individual at any par-
ticular point in time. This means that we can t directly measure the effect of wearing
Body Vibes on an individuals skin health. We suspect this fact is key to their business
model.

What Is Causation Good For?

Knowledge of causation is necessary for understanding the consequences of an
action that changes some feature of the world. In particular, to weigh the costs and
benefits of a decision, you need to know how your action will affect the outcomes you
care about.

Receive

Body Vibes

Don't Receive

Body Vibes

Individual 1

Individual 2

Individual 3

Individual 4

L Individual 5
Individual 6

Individual 7

Individual 8

Individual 9

Individual 10

1

0

0

1

1

0

0

1

1

0
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For instance, you cant possibly know if it is a good idea to spend money on a drug
to treat heart disease without knowing about a causal relationship—whether the drug
reduces the risk of heart disease. The same goes for many decisions. When you are
deciding whether or not to intervene in the world in some way—with a policy, an exer-
cise plan, a parenting strategy, a new kind of online learning, or what have you—you
want to know how the intervention affects the outcomes you care about.

While the examples we ve discussed are easily understood in terms of counterfac-
tual comparisons, sometimes thinking in terms of counterfactuals can seem vexing or
confusing. In the next sections, we explore some of these issues.

The Fundamental Problem of Causal Inference

In our discussion oftable 3.1 we nodded toward an important issue—causal effects as
we ve defined them can never, ever be directly observed. Everyone either receives Body
Vibes or doesn't receive Body Vibes. So you only observe one potential outcome for
each person. But the causal effect is the difference in a persons potential outcomes. This
inherent unobservability of causal effects is called the fundamental problem of causal
inference. Let s see exactly why we can t observe causal effects and what that implies for
our ability to learn about causality.

The effect of going to college on your income is the difference in your income in a
world in which you go to college versus a world in which you are the same up until the
college decision but you dont go to college. At least one of those worlds is counterfac-
tual. You can t both go to college and not go to college. That is, you have two potential
outcomes—^colleae and ^n0 college* ^ut you ^ave on^ one aci:ua^ outcome: either
you went to college or you didn t. Given this, we can never observe the effect of going
to college on your income since we only observe your income in the actual world, not
the counterfactual world.

The fundamental problem of causal inference, then, is that, at any given time, we
only observe any given unit of analysis (e.g., a person, basketball team, or country) in
one state of affairs. So we can t observe the effect on that unit of being in that state of
affairs versus some other state of affairs, because all the other states of affairs are coun-
terfactual. We can t know ^coueae ~~ ^no college ^or you> because we only observe one
of the two values. We saw this fact earlier, in table 3.1, where we noticed that we could
only observe the actual outcome for each individual; the other potential outcome was
counterfactual.

So how do we make progress on answering causal questions if effects are fundamen-
tally unobservable? Fortunately, there are lots of situations where we don t necessarily
need to know the effect for every individual unit of analysis. Instead, we want to know
the average effect across lots of individuals.

Suppose, for instance, that the Food and Drug Administration (FDA) is deciding
whether to approve a new drug. To learn about the health effects of the drug, scientists
conduct a randomized trial, assigning some people to take the drug (the treated group)
and other people to take a placebo (the untreated group). Because of the fundamental
problem of causal inference, the scientists cant observe the effect of taking the drug on
any individual. Each person is either taking the drug or not. But by comparing the aver-
age health outcomes for people in the untreated group to the average health outcomes
for people in the treated group, they can assess the average effect of the drug. (We'll
talk a lot more about how this works in parts 2 and 3.) Doing so allows the scientists
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to answer what turns out to be the key causal question for the FDA's decision: If we
approve the new drug, how will health change in the population on average?

Drug approval is one setting in which knowledge about average effects is sufficient
to inform the key decisions. But there are some settings where this is not the case and
the fundamental problem of causal inference constitutes a real challenge. For instance,
assessing legal liability involves what's called the but-for test. The test requires answering
questions like "Would a harm to Anthony not have happened but for Ethan's actions?"
The fundamental problem of causal inference says we can never know for sure, since
the world in which Ethan did not take his action is counterfactual, so we don t know
what happens to Anthony in that world. Instead, what we've just said, and will cover
in much more detail in the rest of the book, is that there are methods for answering a
slightly different question like "On average, when people take actions of the sort Ethan
took, does it tend to cause harm to other people?" A convincing answer to that latter
question may or may not be compelling in a court that wants to answer the former.

Part of clear thinking about causal relationships involves admitting that some-
times we cannot answer certain questions with complete confidence, even when those
questions are very important.

Conceptual Issues
Causality is a deep and difficult topic. The counterfactual definition of causality

doesn't provide all the answers. But it can help us think more clearly about some thorny
conceptual issues. Let's talk through a few of these.

What Is the Cause?

One frustration people sometimes feel with regard to the counterfactual approach
is that some of the causal questions that we are accustomed to asking appear inco-
herent within the counterfactual framework. Think of questions like the following:
Why did housing prices tank during the latest financial crisis? Why did the Chicago
Blackhawks win the Stanley Cup? What caused World War I? Questions of causal attri-
bution like these are common. But when causation is defined in terms ofcounterfactual

comparisons, they don't make a ton of sense.
Let's think about World War I. A common claim is that World War I was caused

by the assassination in 1914 of Archduke Ferdinand, the heir to the throne of Austria-
Hungary. The assassins were part ofa movement that wanted Serbia to take control over
the southern Balkans, including Bosnia and Herzegovina, which Austria-Hungary had
annexed in 1908. The government of Austria-Hungary responded to the assassination
with the July Ultimatum, a list ofdemands so onerous they were certain to be rejected by
the Serbian government. When the ultimatum was rejected, Austria-Hungary declared
war on Serbia, leading Russia to mobilize its army to defend Serbia. In response, Ger-
many (an ally of Austria-Hungary) declared war on Russia, France (an ally of Russia)
declared war on Germany, and the whole mess cascaded into World War I. Thus, the
claim goes, the assassination of Archduke Ferdinand caused World War I.

Now, there is a sense in which this claim is perfectly simple to think about in our
framework. We can ask, In the counterfactual world in which Ferdinand was not assas-
sinated, would World War I still have occurred? IfWorld War I would not have occurred
in that counterfactual world, then it seems right to say that the assassination had an
effect on war breaking out. But that is a far cry from saying that the assassination of
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the archduke was the cause of the war. Surely, there are many factors that, had they
been different, would have prevented World War I from being fought. Sure, had Arch-
duke Ferdinand not been assassinated, maybe the war wouldn't have been fought. But
also, had Austria-Hungary not annexed Bosnia and Herzegovina, perhaps Ferdinand
would have never been assassinated and the war would have never been fought, so the
annexation was just as much a cause as the assassination. Similarly, had the Serbian gov-
ernment complied with the July Ultimatum, perhaps the war would have been avoided,
so the noncompliance with the ultimatum was also a cause. And to further illustrate
how many such causes there are, had some fish-like creature in the Paleozoic Era swam
left instead of right, perhaps the human race as we know it would not exist, and again,
World War I would have never been fought. Or, to take an example with some histori-
cal gravitas, the seventeenth-century French mathematician Blaise Pascal, reflecting on
Mark Antonys attraction to a long proboscis, quipped, "Cleopatra's nose, had it been
shorter, the whole face of the world would have been changed."1 This led James Fearon,
in an essay on counterfactual reasoning, to ask, "Does this imply that the gene control-
ling the length of Cleopatra's nose was a cause of World War I?" As you can see, then,
the problem isn't that it is false that the assassination of Archduke Ferdinand caused
World War I. Rather, since so many factors appear to have caused World War I, talk of
one single cause seems pointless and misguided.

Once we start thinking about counterfactuals, it becomes pretty clear that things have
lots of causes. That makes it hard to answer "What is the cause" questions. Instead, it
pushes us to ask "Was this a cause" or "Did this have an effect" questions. This is perhaps
disappointing.

One thought you might have, in response, is that surely some causes of a phe-
nomenon are more important or more proximate than others. If that is true, perhaps we
can still talk about the important or the proximate causes of World War I. How might
we do this?

An approach that some philosophers advocate goes something like this. Imagine all
the counterfactual worlds in which World War I did not occur. Some of these coun-
terfactual worlds are very different from the actual world—for instance, World War I
probably doesn't occur in many counterfactual worlds in which there is no gravity. Oth-
ers are quite similar to the actual world—perhaps World War I doesn't occur in a world
identical to ours through June 27,1914, but in which Archduke Ferdinand overslept on
June 28. We learn about the proximate causes of World War I by comparing the actual
world to the counterfactual world in which World War I did not occur that is most sim-

ilar to the actual world. This kind of analysis may allow us to give reasonable-sounding
answers to "What is the cause" questions without abandoning our definition of causa-
tion based on counterfactual comparisons. For instance, it seems reasonable to think
that the assassination of Archduke Ferdinand is a more proximate cause ofWorld War
I than is Cleopatra's nose, the laws of gravity, or the whims of Paleozoic fish.

There is certainly something to this approach. But, that said, it is often hard to assess
the importance or proximity of one cause versus another in a principled way. If you
know a bit of history, you surely can come up with other causes of World War I that
seem equally proximate. For instance, many scholars have argued that early-twentieth-

Antony and Cleopatra's love affair had major repercussions for world history. For instance, historians generally
believe that the end ofthe Roman Republic and the establishment of the Roman Empire were ensured when Antony
and Cleopatra were defeated by Octavian (later, Emperor Augustus) at the Battle ofActium. Had this not occurred,
who knows how differently the rest of western history might have played out?



44 Chapter 3

century military doctrines favoring offensive over defensive strategies played a role in
causing World War I. Is the world in which a slightly different military doctrine was
adopted more proximate to our world than the one in which Archduke Ferdinand
was not assassinated? For that matter, is the world in which one Paleozoic fish took
a different turn really such a large leap? It's hard to say.

To see the problem in a somewhat less lofty and perhaps more familiar setting, con-
sider an NCAA Division III women's basketball game between the Chicago Maroons
(where some of our star students are also star athletes) and the Emory Eagles. Suppose
the Maroons are trailing the Eagles by one point, and the Maroons have just enough time
left to take one final shot. They make it, winning the game by one point (in basketball,
field goals are worth at least two points). The next day, the Chicago Maroon newspaper
will fixate on that last shot, and the reporter might even write that the last shot was the
reason the Maroons won.2 But think about this counterfactually for a moment. Dozens
of shots throughout the game were pivotal. Plausibly, every shot the Maroons made
was pivotal—in a counterfactual world in which they missed that shot and everything
else played out as it did in the actual world, they would have lost instead ofwon. Simi-
larly, every shot the Eagles missed was pivotal—in a counterfactual world in which they
made it and everything else played out as it actually did, they would have won instead.
So what s so special about that last shot? One possibility is that everyone knew that the
final shot would be pivotal when it was taken. But very few other causes meet this crite-
rion, certainly not the assassination ofArchduke Ferdinand. So, in our view, there is no
obvious reason to think that the last shot was a more important cause of the Maroons'
victory than the other shots. Instead, we think this example illustrates a basic, iffrustrat-
ing, fact of life: individual events can have many equally important and consequential
causes.

Another surprising fact about the counterfactual approach is that, at least in prin-
ciple, its possible for some event to have no causes at all. Suppose that the authors of
this book concoct the perfect crime. We both shoot and kill our sworn enemy at the
same time, knowing that either bullet would be fatal on its own. When questioned,
Anthony says, "Clearly, I can t be charged with a crime. My actions had no effect what-
soever. Had I not fired my gun, the victim would still have died." And similarly, Ethan
retorts, "I could not have possibly caused the victims death either. Had I not shot my
gun, he would have still died." While the justice system might not be impressed by our
defense, the counterfactual logic is sound. Some events may be the result ofa confluence
of factors whereby no single factor could have changed the outcome. This theoretical
possibility is yet another reason that it might not make much sense to ask questions
like "What caused World War I?" It could well be that, for all the factors we like to talk
about, taking away any one of them would in fact not have sufficed to prevent the war.

Causality and Counterexamples
One common skeptical reaction to evidence showing the existence of an average

effect is to point to counterexamples. Perhaps you ve had an experience like the follow-
ing at a family gathering. You read a study showing that, on average, flu shots reduce
the risk ofcontracting the flu. You mention this over Thanksgiving dinner, encouraging

2 We know it's confusing that the basketball players are the Maroons, the newspaper is the Maroon, and probably
neither sports teams nor newspapers should be named after a color. Our university is typically not known for
athletics or branding.
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your loved ones to get the vaccine. But your vaccine-skeptic relative says, "I don t know,
I got the flu shot last year and I still got the flu." Many people nod and agree, perhaps
pointing out that their friend so-and-so also got the flu shot and still got sick.

The intuition behind this kind ofobjection-by-way-of-counterexample is something
like this: "If flu shots really prevent the flu, then no one who got a flu shot would get the
flu. Thus, my one counterexample means the vaccine doesn't work."

This argument does not reflect clear thinking. The evidence says that the flu shot
caused flu risk to go down, averaging across lots ofpeople, each with their unique biol-
ogy, level of flu exposure, environment, and so on. It doesn't say that it eliminated flu
risk for each and every individual. But to get flu risk to go down on average, the flu shot
must have prevented the flu (i.e., had a causal effect) for at least some people. We just
don't know exactly which ones experienced the effect.

Let's think about this in our potential outcomes notation. Think of the potential out-
comes as whether or not you get the flu. We'll say 7=1 ifyou stayed healthy and 7 = 0
ifyou got the flu. And think of the treatment as whether you got the flu shot, with T = 1
meaning you got the shot and T = 0 meaning you didn't.

Maybe there are three different kinds ofpeople—call them the always sick, the never
sick, and the vaccine responders. The always sick and the never sick have potential out-
comes that don't respond to treatment. The always sick get the flu regardless ofwhether
they get the flu shot, and the never sick never get the flu. In our notation,

M,always sick = ^ *o,always sick = "
and

M,never sick = * ^o,never sick = *

But the vaccine responders are different; they get the flu if they don't get the shot, and
they don't get the flu if they do get the shot:

^i,vaccine responder = * ^o,vaccine responder = "
In a population made up of these three groups of people, getting the flu shot reduces
the probability you will get the flu. That is, on average, the treatment effect is positive.
You don't know which group you are in. There is a chance you are a vaccine responder.
So getting a flu shot reduces your probability of getting sick.

Let's see this in an example. Suppose there are 10 individuals. Individuals 1-5 get the
flu shot, while individuals 6-10 don't. Individuals 1,3,4, 5, and 8 are always-sick types,
so they get the flu. Individuals 5, 6, 7, and 10 are never-sick types, so they stay healthy.
Individuals 2 and 9 are vaccine responders. Individual 2 gets the flu shot, so she stays
healthy. But individual 9 does not get the flu shot, so he gets sick.

Table 3.2 shows potential outcomes and treatment effects. As we can see, not every-
one in this population has a positive treatment effect. But the average of the treatment
effects across these 10 individuals is -^ because two of the ten are vaccine responders.
So, for any individual, not knowing which type ofperson they are, there is a 20 percent
chance that taking the flu shot will prevent them from getting the flu.

Importantly, pointing to one counterexample is neither here nor there with respect
to such evidence. Perhaps your unlucky relative was a person, like individual 1, 3, or 4,
whose confluence ofcircumstances were such that the flu shot didn't have an effect (i.e.,
they were an always sick). That doesn't mean it didn't have an effect for other people.
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Table 3.2. Potential outcomes for flu with and without the flu shot. For each individual, the actual
outcome that we can observe is in bold type. The counterfactual outcome that we do not observe
is in regular type.

Health

with Flu Shot

Yii

Health

without Flu Shot

Y0i

Treatment Effect

for Individual i

Yn - Yoi

Flu Shot

No

Flu Shot

Individual 1

(always sick)
Individual 2

(vaccine responder)
Individual 3

(always sick)
Individual 4

(always sick)
Individual 5
(never sick)

Individual 6
(never sick)
Individual 7
(never sick)
Individual 8

(always sick)
Individual 9

(vaccine responder)
Individual 10
(never sick)

0

1

0

0

1

0

0

0

0

1

And it doesn't even mean that the flu shot won t prevent the flu for that same relative
next year or that it won t help you. Absent any further information about which group
they are in, any individuals best guess is that the flu shot will reduce their chances of
contracting the flu since it does so on average. And we haven t even discussed the more
complicated issue that outcomes aren't actually binary, so the shot may have a causal
effect on the severity of the flu.

Of course, the possibility that effects are different for different people presents
another set of important conceptual challenges. We might be able to detect such hetero-
geneous treatment effects, especially if they correspond with observable categories (e.g.,
men versus women, older versus younger, healthy versus sick). To identify such hetero-
geneous effects, we could run a separate experiment for each group, which would tell
us the average effect for each group rather than for the whole population. But what if
effects differ across people for complicated or obscure reasons that might never occur
to us? Then, when we go to look at the effect of some intervention, it is very impor-
tant to keep in mind that we are learning about an average effect. Some people may
have effects much larger than the average. Others may have effects much smaller than
the average. Indeed, some people may have no effect at all or an effect in the opposite
direction from the average. Ifwe don t know the source of this heterogeneity, all we will
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be able to say is something about the average, which, as we've discussed, may still be
valuable.

Causality and the Law
As we briefly mentioned previously, one place where philosophical questions about

causality become ofserious practical import is in the law. Administering justice requires
assigning blame and assessing liability. If we want to know whether, say, Ethan should
be held liable for some harm suffered by Anthony, surely we need to know whether
Ethan's actions caused that harm. But, as we ve just discussed, talking about causes in
this way is conceptually fraught. Many things, from the behavior of a Paleozoic fish to
Ethans alleged negligence, may have had a causal effect on the harm Anthony suffered.
Is the fish liable too?

The law is aware of the philosophical conundrum. But it must ultimately come
up with some pragmatic resolution that allows judges and lawyers to get on with the
business of administering justice. Here's, roughly, where it comes down.

In the Common Law, causality is thought of in terms of two conditions that are
closely related to things we've talked about. These are referred to as cause-in-fact and
proximate causality.

Cause-in-fact is essentially counterfactual causality. Whether Ethans actions are a
cause-in-fact of Anthony's suffering is determined by whether Anthony wouldn't have
suffered butfor Ethan's actions.

Of course, as you already know, a counterfactual standard like the but-for test isn't
very stringent. World War I wouldn't have happened but for a Paleozoic fish turning the
wrong direction. Does that mean we should blame the poor fish for World War I?

The law's answer is no. The fish is off the hook, so to speak. This is where proxim-
ity comes in. For there to be liability, the law requires that some cause-in-fact be close
enough in the causal chain. This thought is also familiar—for instance, from our argu-
ment that the assassination ofArchduke Ferdinand is a more proximate cause ofWorld
War I than is Cleopatra's nose.

So an assessment of legal causality might go something like this. Suppose you order
food delivery and the delivery person drives recklessly, crashing into your neighbor's
car. Are you liable for your neighbor's suffering? It is plausible that, but for your deci-
sion to order delivery, the delivery person wouldn't have been in the area and your
neighbor's car wouldn't have been hit. So your actions are probably a cause-in-fact of
your neighbor's suffering. But there are many steps in the causal chain between your
actions and the car crash, all ofwhich are out ofyour hands. So the law would not find
you liable for the damage to your neighbor's car.

Ofcourse, as we've discussed, knowing exactly how to apply the conditions of cause-
in-fact and proximate causality is tricky. To apply the but-for test, we have to know
what the right counterfactual world is. And denning how close is close enough for a
proximity test is a fraught problem, full of judgment calls. All of which is to say that
these questions about causality are vexing and of great practical importance.

Can Causality Run Backward in Time?
One common intuition is that causality must run forward in time. That is, an event

that happens now can have an effect on events that happen in the future. But surely, the
thought goes, events that happen in the future can't affect events in the past. Indeed,
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one common strategy for trying to establish a causal relationship is to show that the
supposed cause typically occurs prior to the supposed effect.

Let s check this intuition by thinking about birthday cards. Here's a correlation that
we hope is true in the world: the number of birthday cards that get mailed to you in a
given week is strongly correlated with it being within a week of your birthday. That is,
many more birthday cards are mailed to you in the week before your birthday than in
any other week of the year.

Now, although correlation need not imply causation, we suspect that there is a causal
relationship here but not the one that's implied by thinking of causal relationships as
running forward in time. Receiving birthday cards does not cause your birthday to
occur. In a counterfactual world in which those cards were sent at a different time, or
even in a counterfactual world in which greeting cards cease to exist, your birthday will
still occur on the date you were born. Instead, you might say the causal relationship runs
backward in time. Your birthday exerts an effect on the sending of birthday cards. In
the counterfactual world in which your birthday occurs in a different month, you will
be sent fewer birthday cards in the week preceding your birthday in this world. Thus,
on our counterfactual definition, your birthday exerts a causal effect on birthday cards.
Causality appears to run backward in time.

There are objections to this line of argument. For instance, one might argue that it
isn't your future birthday, but anticipation of that birthday, that exerts a causal effect
on the sending of birthday cards. If we changed peoples beliefs about whether your
birthday is coming up, we'd change their card-sending behavior. But ifwe changed your
actual birthday, without a change in their beliefs, the cards would still be sent. On this
argument, causality is operating forward in time, in the intuitive way.

Even that need not be the end ofthe argument. After all, where did the anticipation of
your birthday come from? It presumably came from the fact of your actual birthday. If
we changed the fact ofyour actual birthday in the future, we'd change peoples anticipa-
tion ofyour birthday now (which would, in turn, change their card-sending behavior).
Perhaps we are back to causality running backward in time. Or perhaps not. Is it really
the changing of your birthday in the future that affects peoples anticipation today? Or
is it telling them about the change in your future birthday, in which case we are right
back to causality running forward in time.

As you can no doubt tell by this point, we aren't going to solve this issue here. But
we do want you to see two things clearly. First, evidence that one thing occurred before
another is not, on its own, convincing evidence that the one caused the other. Second,
whether or not you think causality can or cannot run backward in time, we can always
define the causal effects in terms of a counterfactual.

Does Causality Require a Physical Connection?
Another intuition many people share is that causation necessarily has to do with

physical connection—a view that we'll refer to as physicalism. One billiard ball affects
another by bumping into it. Maybe such physical connections always underlie causal
relationships.

While, of course, there are many examples of causal effects that occur through phys-
ical connection, there are good arguments to suggest such physical connection is not
required. Think ofa person who is deterred from robbing a bank byworry about impris-
onment. Such a persons behavior is affected by the existence of the police, the courts,
the penal code, and the prison system. The criminal justice system affects whether this
person commits a crime, even though there is no physical connection between them.
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Indeed, think of our previous discussion of the effect of birthdays on the sending of
birthday cards. Birthdays aren't a physical thing in the world at all. It is hard to see what
it would even mean for the causal relationship between birthdays and the sending of
birthdays cards to occur through physical connection.

A defender of physicalism might say that with enough creativity, we can describe
the effect of the criminal justice system on crime in purely physical terms. Perhaps the
past arrest and conviction ofpeople who committed crimes led reporters to write about
this activity in newspapers, which led the person in question to read about these arrests
in the newspaper, which, through a complicated sequence of light hitting the persons
eyeballs, led to lots of chemical and electrical connections in that persons brain, which
deterred them from committing a crime. You could do a similar exercise for birthdays
and birthday cards.

Again, we aren t going to provide a definitive answer. There may be reasonable argu-
ments on both sides of the physicalism debate. The important point is that we can think
about counterfactually denned causal relationships that do not depend on anything like
the simple, commonsense kind of physical connections suggested by the billiard ball
example.

Causation Need Not Imply Correlation
We've agreed that correlation need not imply causation. But, perhaps more surpris-

ingly, causation also need not imply correlation and certainly not correlation in the
expected direction. There are many situations in which some feature of the world has
(say) a negative effect on some other feature of the world, but those two features of the
world are positively correlated (or vice versa).

You'd probably find a strong, positive correlation between the number of firefighters
who have recently visited a house and the amount of fire damage to that house. But if
we had to guess, we'd suspect that firefighters, on average, reduce fire damage. In other
words, iffewer firefighters had visited, we suspect there would be even more fire damage.

So why is the correlation positive? Firefighters tend to visit houses that are on fire.
So, although firefighters reduce fire damage to some degree, the houses that have been
visited by firefighters tend to have more fire damage. Hence, not only should one not
conclude from a correlation that there must be a causal relationship, but one also should
not assume that just because a causal relationship exists, the correlations found in the
world will correspond to those causal relationships in some straightforward way.

Wrapping Up
Understanding whether a causal relationship exists is one of the fundamental goals

of quantitative analysis. But, if we are going to do that, we need to think clearly about
what causality means.

We believe that the best way to conceptualize causality is through a thought exper-
iment involving counterfactuals. A treatment has a causal effect on an outcome if the
outcome would have been different had the treatment been different. Of course, in the
actual world, the treatment was what it was. We can't observe the counterfactual world
in which the treatment was different in order to figure out if the outcome would have
been different. This is the fundamental problem of causal inference.

The fact that causal effects are unobservable doesn't mean data analysis cannot
help us learn about them. In particular, we can learn about the average effect in some
population, even though we can't observe any of the individual effects directly.
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Doing so involves making careful use of quantitative knowledge about things like
correlations. In part 2 we turn to a more detailed discussion of how we establish and
quantify correlations. This will set us up to be able to think clearly in part 3 about
estimating causal effects.

Key Terms
• Causal effect: Informally, the change in some feature of the world that would

result from a change to some other feature ofthe world. Formally, the difference
in the potential outcomes for some unit under two different treatment statuses.

• Body Vibes: Stickers that a company called Goop claims cause clear skin. The
authors of this book do not endorse Body Vibes, mainly because we will be
releasing our own competitor: Brain Vibes. One sticker applied to the temple
causes clear thinking.

• Counterfactual comparison: A comparison of things in two different worlds
or states of affairs, at least one ofwhich does not actually exist.

• Treatment: Terminology we use to describe any intervention in the world. We
usually use this terminology when we are thinking about the causal effect ofthe
treatment, so we want to know what happens with and without the treatment.
Importantly, although it sounds like medical terminology, treatment as we use
it can refer to anything that happens in the world that might have an effect on
something else.

• Potential outcomes framework: A mathematical framework for representing
counterfactuals.

• Potential outcome: The potential outcome for some unit under some treat-
ment status is the outcome that unit would experience under that (possibly
counterfactual) treatment status.

• Fundamental problem of causal inference: This refers to the fact that, since
we only observe any given unit in one treatment status at any one time, we can
never directly observe the causal effect of a treatment.

• Heterogeneous treatment effects: When the effect of a treatment is not the
same for every unit ofobservation (as in the case of flu shots and virtually every
other interesting example of a causal relationship), we say that the treatment
effects are heterogeneous. Sometimes we re still interested in the average effect
even though we know the treatment effects are heterogeneous, and sometimes
we want to explicitly study the nature of the heterogeneity. (In contrast, when
discussing the unlikely possibility that treatment effects are the same for every
unit, we would refer to homogeneous treatment effects.)

Exercises

3.1 Sarah says that she is hungry. John hands her a piece of pizza. Sarah eats the
pizza and then declares that she is no longer hungry.

(a) The fundamental problem of causal inference seems to say that you
can t know that Sarah eating the pizza had a causal effect on her no
longer being hungry. Is that right? Explain.
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(b) Do you think you nonetheless have good reasons to believe that eating
the pizza had an effect on Sarah no longer being hungry? Explain why
or why not.

(c) Do you have good reasons for believing that John handing Sarah the
pizza had a causal effect on her no longer being hungry? In your assess-
ment, are the reasons to believe Johns actions had a causal effect better
or worse than the reasons to believe Sarah eating the piece of pizza had
a causal effect?

A government is considering making alcohol consumption illegal as part of
a public health campaign. Lets think of making alcohol illegal as the treat-
ment T. Write T = 1 if the government makes alcohol illegal and T = 0 if the
government leaves alcohol legal.

We will think of a binary outcome for each person: either they drink alco-
hol or they do not. If person i drinks at treatment status T, we write her
potential outcome as Yji = 1, and if she doesn't drink, we write it as Yji = 0.

Suppose the society is made up of three groups: the always drinkers, the
legal drinkers, and the never drinkers. The always drinkers will drink whether
or not alcohol is legal. The legal drinkers will drink if and only if alcohol is
legal. The never drinkers won t drink whether or not alcohol is legal.

(a) Write down, in potential outcomes notation and as a number (0 or 1),
each of the two potential outcomes for each of the three groups.

(b) Write down, in both potential outcomes notation and as a number (0 or
1), the causal effect of making alcohol illegal on drinking for each of the
three groups.

(c) Is there an effect, on average, ofbanning alcohol in this society?
(d) Suppose you are out to lunch with some friends and one of them says,

"My uncle lives in a place where they banned alcohol and all of his
friends kept drinking, so I don t think the ban does anything." Explain,
in terms of our example, why this isn't a convincing argument.

The Republican National Committee (RNC) has hired three consultants and
asked them to figure out the cause of their loss in the 2020 presidential elec-
tion. The first consultant says that they didn't do enough television advertising.
The second consultant reports that they should have encouraged more of their
supporters to vote rather than criticizing voting by mail. The third consultant
concludes that Donald Trump should have done a better job responding to
the COVID-19 pandemic and should have shown more compassion on the
campaign trail. Confused by the apparently conflicting information, the RNC
hires you, a quantitative analyst, to adjudicate between these three possibilities.
What would you tell them? How would you proceed?

In the 2016 U.S. Open golf tournament, Dustin Johnson was leading the tour-
nament in the final round, and his ball was resting on the fifth green. While
preparing for his upcoming putt, he tapped his putter on the ground next to
the ball and the ball moved. The rules at the time stated that ifwe were highly
certain that a player caused his ball to move, even if it was inadvertent, he or
she should incur a penalty. Because you're an expert on causation, the rules
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officials call you in to evaluate the situation. The officials make the following
arguments. Please provide your expert response to each one.
(a) Johnson couldn't have possibly caused the ball to move, because he

(and his putter) never touched it.
(b) Johnson shouldn't receive a penalty because the true cause of the ball

moving was the greenskeeper. Had the greenskeeper not cut and rolled
the greens so much that morning, the ball wouldn't have moved.

(c) An empirically minded official went out to the same green, placed a ball
down, tapped his putter on the ground next to the ball, and it didn't
move. Therefore, Johnson's actions couldn't have caused the ball to
move.

(d) One official was watching the incident up close and says he's virtu-
ally certain that if Johnson had not tapped his putter next to the ball,
it wouldn't have moved. Therefore, he caused it to move and should
receive a penalty.

Readings and References
You can read about Body Vibes on the Goop website. We last accessed it on June 15,
2020. http://goop.com/wearable-stickers-that-promote-healing-really/

The quote from Blaise Pascal on Cleopatra's nose is from his seventeenth-century
collection entitled Pensees.

The essay about counterfactual reasoning discussing the gene controlling the length
of Cleopatra's nose is

James D. Fearon. 2011. "Counterfactuals and Hypothesis Testing in Political Science."
World Politics 43(2): 169-195.

If you'd like to read more about the counterfactual definition of causality, potential
outcomes, and surrounding discussions and debates, have a look at these:

David Lewis. 1973. "Causation." Journal ofPhilosophy 70:556-67.

Paul W. Holland. 1986. "Statistics and Causal Inference." Journal of the American
Statistical Association 81(396):945-60.

Stephen Mumford and Rani Lill Anjum. 2014. Causality: A Very Short Introduction.
Oxford University Press.

There is also a nice entry by Peter Menzies and Helen Beebee in the Stanford Ency-
lopedia ofPhilosophy: https://plato.stanford.edu/entries/causation-counterfactual/.
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CHAPTER 4

Correlation Requires Variation

What You'll Learn

• You cant learn about a correlation without variation in both variables of
interest.

• In many realms of life—from education to medicine to rocket science—people
fall into the trap of trying to make claims about correlations without such
variation.

• A particularly common way people fall into this mistake is by selecting on
the dependent variable, examining only instances when some phenomenon
occurred rather than comparing cases where it occurred to cases where it did
not.

• Many institutional procedures push us to select on the dependent variable
without noticing it.

Introduction

In chapter 2 we discussed the idea that the correlation between two features of the
world is the extent to which they tend to occur together. We opened our discussion of
correlation by thinking about whether oil production and autocracy are correlated. To
figure this out we looked at the country-level data represented in table 4.1.

To determine whether there is a correlation between oil production and autocracy
we compared the percentage of major oil producers that are autocracies to the per-
centage of countries that aren't major oil producers that are autocracies. To make this
comparison, we needed four pieces of information: the number of autocracies that are
major oil producers, the number ofdemocracies that are major oil producers, the num-
ber ofautocracies that are not major oil producers, and the number ofdemocracies that
are not major oil producers. Had we been lacking any of these pieces of information,
we would not have been able to figure out whether oil production and autocracy are
correlated.

To see why, suppose we didn't know the number of democracies that are major oil
producers. (Of course, wed also have to not know the total number of countries, so we
couldn't just back out the 9 by subtracting the number of countries in the other three
categories from the total number ofcountries.) We still know that about 20 percent (j^)
of countries that aren't major oil producers are autocracies. But now we cant figure out
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Table 4.1. Oil production and type of government.

Not Major Oil Producer Major Oil Producer Total

Democracy 118 9 127
Autocracy 29 11 40
Total 147 20 167

what proportion of the major oil producers are autocracies. It could be anything. If the
number of democracies that are major oil producers turned out to be (say) 11, then 50
percent (^) ofmajor oil producers would be autocracies and there would be a positive
correlation. If the number of democracies that are major oil producers turned out to
be (say) 99, then only 10 percent (y^) of major oil producers would be autocracies,
so there would be a negative correlation. If the number of democracies that are major
oil producers turned out to be 44, then 20 percent (^) of major oil producers would
be autocracies—the same as for countries that are not major oil producers—and there
would be no correlation at all. So, just as we saw in our discussion of scandals and con-
gressional representatives in chapter 2, we need to observe all four pieces of information
to figure out the correlation.

This is what we mean when we say that correlation requires variation: Ifyou want to
figure out whether two variables are correlated, you have to observe variation in both of
them. You must observe the number ofcountries that are and are not major oil produc-
ers. And you must observe the number of autocracies and democracies in each group.
Just observing variation in one or the other variable is not enough. In chapter 2, when
we asked which of five factual statements described a correlation, the problem with the
three statements that did not was a lack ofvariation in one of the variables.

While it may seem obvious, on the basis of our simple binary example, that corre-
lation requires variation, in our experience, it is anything but. Indeed, failing to look
for variation in one or another variable while trying to establish a correlation is an
exceptionally common mistake.

In this chapter, we explore this mistake and try to unpack why it is so common.
Broadly, we think there are two closely related reasons that people so frequently try
to establish a correlation without variation. The first reason is called selecting on the
dependent variable. The second reason is that the world is often organized in ways that
push us to make this mistake.

This chapter, more than most in the book, is built around examples. We do this for
a reason. We ve found that, once we explain that correlation requires variation, people
tend to nod their head in agreement, appearing to understand. Indeed, because the
point seems obvious when put in plain English, many people are skeptical that this
could be such a big problem. And yet, they themselves go right back to making the same
mistake. We hope that by showing you lots ofexamples ofvery smart people making this
mistake in high-stakes environments, we will convince you that this is a real problem
and that avoiding this error requires clear thinking, genuine effort, and concentration.

Selecting on the Dependent Variable
Ifyou want to forecast or explain some phenomenon, it is a natural impulse to start

by examining previous instances of that phenomenon occurring. This is called selecting
on the dependent variable. But if you look only at instances when the phenomenon



Correlation Requires Variation 57

occurred, you are trying to assess a correlation without variation, since you have no
variation in whether or not the phenomenon occurred. This is like looking for correlates
of autocracy without examining any democracies. It wont work.

The phrase dependent variable refers to the variable representing the phenomenon
you are trying to forecast or explain. This mistake is referred to as selecting on the depen-
dent variable because you are selecting which cases to look at based on the value of the
dependent variable (e.g., only looking at autocracies) rather than looking at variation
in the dependent variable (e.g., comparing autocracies and democracies).

Consider a few examples. Following the financial crisis of 2008, both scholars and
journalists who wanted to understand how to predict future financial crises invested
enormous time and energy examining the historic record to look for patterns in pre-
vious crises. Malcolm Gladwell, in his book Outliers, tries to understand the correlates
of personal success by recounting the lives of highly accomplished people, looking for
similarities. Congress, considering a change to American counterinsurgency strategy in
Afghanistan, heard testimony on the correlates of suicide terrorism from an academic
expert who had done an exhaustive study of all suicide terrorist campaigns since 1980,
looking for shared characteristics.

As natural as it seems to look for commonalities in past instances ofevents you want
to forecast, it really is a mistake. Correlation requires variation. Each of the studies just
described would have been far more informative ifthey'd had variation in the dependent
variable.

The claim that we can t learn about the correlates of financial crises or suicide ter-

rorism by looking for commonalities among historic cases of similar events may seem
counterintuitive. But, since we know that correlation requires variation, the mistake is
actually quite simple to grasp. Put in the terms of our earlier example, each of these
examples is analogous to looking for correlates of oil production without any data on
non-oil-producing countries!

To see the key conceptual flaw in all of these arguments in another way, lets start by
considering the central claim in Gladwells Outliers, the so-called 10,000-hour rule.

The 10,000-Hour Rule

Gladwell s idea is that it takes about 10,000 hours of serious practice to master any
difficult skill. Talent might matter too, but first and foremost, if you are looking for a
great achiever, look for someone who put in that 10,000 hours of practice.

Now, of course, Gladwell isn't just interested in forecasting great success. He thinks
the 10,000-hour rule might be causal. If true, this would have far-reaching conse-
quences. Given enough practice, perhaps any of us could achieve almost anything.

But talk of causality is premature. Before we can think about causality, we need to
figure out whether Gladwell s evidence is even compelling for the claim of a correlation
between 10,000 hours of practice and great success. So lets start there.

Gladwell asks, "Is the ten-thousand-hour rule a general rule ofsuccess?" The answer,
he concludes, is yes. The evidence? "If we scratch below the surface of every great
achiever" we see the same pattern (p. 47). "Virtually every success story... involves
someone or some group working harder than their peers" (p. 239). In case after case,
from Bill Gates to the Beatles, Gladwell shows that great achievers put in their 10,000
hours—overwhelming evidence, he concludes, that practice predicts success.

Lets try to think a little more clearly about Gladwells evidence. What has Gladwell
shown us? Of course, he hasn t actually looked at every great achiever. But he's shown
us evidence that lots of great achievers practice at least 10,000 hours. The big problem
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Table 4.2. Great achievers practice more than 10,000 hours.

10,000 Hours of Practice
Not 10,000 Hours of Practice
Total

Great Achiever

Many
Very few

Not Great Achiever

?

?

Total

is that hes told us nothing about all the people who arent great achievers. A table of
evidence for Outliers would look something like table 4.2.

Even granting that Gladwell is correct that most great achievers put in 10,000 hours
of practice, this doesn't tell us whether 10,000 hours of practice is correlated with
great success. Correlation requires variation. Because he has selected on the dependent
variable, Gladwell s data lack variation in achievement. If you want to know whether
putting in 10,000 hours of practice correlates with success, it is not enough to observe
that most great achievers put in 10,000 hours of practice. We need to know about the
non-achievers' practice habits as well.

Of course, Gladwells analysis does provide some information that we didn't previ-
ously have. Momentarily, lets suppose that Gladwell didnt cherry pick his stories in
order to fit his narrative (although, of course he did: hes a storyteller, not a scientist).
In this case, weve learned that most highly successful people put in 10,000 hours of
practice before achieving great success.

Although this is not enough information to measure a correlation, Gladwell and his
defenders might argue that we already have a rough sense that most members of the
general public who are not great achievers have not put in 10,000 hours of practice. In
that case, maybe Gladwells analysis significantly shifts our beliefs about the correlation
between practice and great success, even if he didn't explicitly measure the correlation.
In these cases where we already have a good sense of the prevalence of something in
the general population, perhaps it's useful to show that the prevalence is different for a
certain group of interest.

Maybe. But we're still skeptical that Gladwells analysis teaches us much. That's
because most people probably have devoted at least 10,000 hours of practice to some-
thing. Anthony has spent 10,000 hours on the golf course, and he's no Tiger Woods.
Ethan has spent 10,000 hours playing guitar, and he's no Jimi Hendrix. Ifyou've worked
at something full time for five years but you're not the most successful person in your
field, then you're one of the many, many people in the top-right cell of table 4.2 that
Gladwell never considered.

We should also remember that Gladwell is a gifted storyteller. In the extremely
unlikely scenario in which Anthony wins the Masters, Gladwell might write an inspiring
and convincing story about how, despite being a full-time college professor, Anthony's
many years of practice, failure, and more practice allowed him to pull off the great-
est Cinderella story in sports history (just let us dream for a moment). But far more
likely, Anthony will happily continue to be one of millions, if not billions, of people
who love something, work hard at it, but never achieve immense success and who are
never considered in Gladwells analysis.

To test your understanding, let's see the problem with claims like Gladwells in
another setting. We are going to repeat his exact argument, but in a fictional example
that we hope makes the problem even clearer.
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Table 4.3. What sick people drank (made-up data).

Sick Not Sick Total

Drank Beverage 500
Didn't Drink Beverage 0
Total 500

Table 4.4. What sick and healthy people drank (made-up data).

Sick Not Sick Total

Drank Beverage 500 9,500 10,000
Didn't Drink Beverage 0 0 0
Total 500 9,500 10,000

Suppose a town of 10,000 people experiences a surprising spate of illness. In the
course of a month, 500 people are taken ill with the same symptoms. Local health offi-
cials want to determine the cause of the illness. They take case histories of the 500 sick
people, looking for commonalities. In the course of this investigation, they find that all
500 people consumed the same beverage, from the same source, the day before they
were hospitalized.

Table 4.3 shows data corresponding to our fictionalized story.
The facts about the beverage and the illness correspond exactly to the facts about

practice and success from Outliers. Everyone who gets sick (succeeds) drank the same
beverage (put in 10,000 hours). Surely, then, drinking that beverage (practicing 10,000
hours) is an important predictor of illness (great success). Ifwe want to know who else
is likely to get sick, we should survey the town and find out who else drank the same
beverage. Right?

Suppose we tell you that the beverage in question is tap water. The claim that the
"pattern" of illness suggests a correlation between the beverage and the disease now
seems questionable. Why? Because many people consume tap water every day. Indeed,
in our fictional town, all 500 people who got sick consumed tap water, but so too did
the 9,500 who didn't get sick. As table 4.4 makes clear, there is in fact no correlation
between the beverage and getting sick: 100 percent of sick people and 100 percent of
healthy people drank the beverage.

The 10,000-hour rule is similarly unsubstantiated by data of the sort presented by
Gladwell. Yes, lots of successful people practice very hard. So too do lots of less success-
ful people. Think of all the bands that practiced countless hours, played countless gigs,
and did not become the Beatles.

Corrupting the Youth
American kids who liked rock music in the 1980s (ask your parents) may remember

the Parents Music Resource Center (PMRC). The PMRC was a lobbying group whose
members opposed what they perceived to be the increasingly inappropriate content
of rock music. Most famous among the founders of the PMRC was Tipper Gore, wife
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of then Senator and later Vice President Al Gore, who started the group after being
shocked by the lyrics of a Prince song.

The PMRC claimed that explicit lyrics were corrupting the youth, causing sui-
cide, sexual violence, and even murder. They denounced "porn rock"—a category
that included Bruce Springsteen because the song Tm on Fire" contained a sexual
innuendo—and demanded warning labels be placed on albums. In 1985, the Senate
Commerce, Science, and Transportation Committee held hearings. Musicians from
across the musical spectrum, from the country singer John Denver to Twisted Sister s
Dee Snider testified against the PMRC s position. But the PMRC prevailed.

Let s consider a bit of the argument. Here is the testimony of Jeff Ling, a PMRC
consultant:

Many albums today include songs that encourage suicide, violent revenge, sexual
violence, and violence just for violences sake... This is Steve Boucher. Steve died
while listening to AC/DCs "Shoot to Thrill." Steve fired his fathers gun into his
mouth... A few days ago I was speaking in San Antonio. The day before I arrived,
they buried a young high school student. This young man had taken his tape deck
to the football field. He hung himselfwhile listening to AC/DC s "Shoot to Thrill."
Suicide has become epidemic in our country among teenagers. Some 6,000 will
take their lives this year. Many of these young people find encouragement from
some rock stars who present death as a positive, almost attractive alternative.. .Of
course, AC/DC is no stranger to violent material.. .One of their fans I know you
are aware of is the accused Night Stalker.

Lings argument, which is typical of crusaders against corruption of the youth,
amounts to this:

1. Some young people behave regrettably.
2. The youth who behave regrettably all listen to this terrible rock music.
3. The music must be the cause of the regrettable behavior

Of course, talk of causality is again premature. We'll focus on whether such evidence
even suggests a correlation.

Thirty years earlier, in 1954, the Senate heard astoundingly similar testimony about
that generations scourge of the youth, comic books. Here is the neurologist and
psychiatrist Fredric Wertham testifying before a Senate subcommittee:

There is a school in a town in New York State where there has been a great deal of
stealing. Some time ago some boys attacked another boy and they twisted his arm
so viciously that it broke in two places, and, just like in a comic book, the bone
came through the skin.

In the same school about 10 days later 7 boys pounced on another boy and
pushed his head against the concrete so that the boy was unconscious and had to
be taken to the hospital. He had a concussion of the brain.

In this same high school in 1 year 26 girls became pregnant. The score this year,
I think, is eight. Maybe it is nine by now.

Now, Mr. Chairman, this is what I call ethical and moral confusion. I dont
think that any of these boys or girls individually vary very much. It cannot be
explained individually, alone.

Here is a general moral confusion and I think that these girls were seduced
mentally long before they were seduced physically, and, ofcourse, all those people



Correlation Requires Variation 61

there are very, very great—not all of them, but most of them, are very great comic
book readers, have been and are.

This kind ofargument persists in the contemporary environment. We have all heard,
and perhaps even made, similar claims about the insidious effects of television or video
games or social media. For instance, following the horrific shootings at Columbine High
School, the U.S. Department ofEducation and the Secret Service set up a joint task force
to determine what factors would allow school officials to anticipate and prevent school
violence. The task force studied all thirty-seven incidents of school violence from 1974
through 2000. While concluding that there is no single profile of a school shooter, they
also reported the following (among many other things):

1. "Many attackers felt bullied, persecuted, or injured by others prior to the
attack."

2. "Most attackers were known to have had difficulty coping with significant
losses or personal failures."

3. "Most attackers engaged in some behavior, prior to the incident, that caused
others concern or indicated a need for help."

4. "Over half of the attackers demonstrated some interest in violence, through
movies, video games, books, and other media."

A similar commission was convened in 2018. While less focused on specific cor-
rupters of the youth, this commission too at times fell into selecting on the dependent
variable. For instance, in a chapter recommending increased focus on character edu-
cation, the commission notes that many school shooters experienced social isolation,
without comparing this to levels of social isolation among those who do not engage in
violence:

In the aftermath of the Parkland shooting, multiple reports indicated the alleged
shooter experienced feelings of isolation and depression in the years leading up
to the shooting Perpetrators ofprevious school shootings shared that sense of
detachment. For example, one Columbine shooter was characterized as depressed
and reclusive Family members and acquaintances ofthe Virginia Tech shooter
said that, as his isolation grew during his senior year, his "attention to schoolwork
and class time dropped." ... The same was true at Sandy Hook.

At times the commission does avoid selecting on the dependent variable. In a chapter
on mental health, they write,

Individuals who commit mass shootings may or may not have a serious mental
illness (SMI). There is little population-level evidence to support the notion that
those diagnosed with mental illness are more likely than anyone else to commit
gun crimes.

But not long after, they return to arguments that suggest they are looking for correlation
without variation:

A U.S. Department of Education and U.S. Secret Service analysis found that as
many as a quarter ofindividuals who committed mass shootings had been in treat-
ment for mental illnesses... Such individuals often feel aggrieved and extremely
angry, and nurture fantasies ofviolent revenge.
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These are not the only such government reports; such analyses are seemingly
inevitable after acts of youth violence. But, for reasons we've already seen, these find-
ings, like the Senate testimonies above, are misleading. Even if it were true that virtually
every young person who behaves in a troubling manner also listens to rock, reads comic
books, or plays video games, this would not establish a correlation between such behav-
ior and these supposed corrupters ofthe youth. Correlation requires variation. Evidence
for the proposition that kids who engage in those activities are more likely to be violent
than kids who do not engage in those activities must involve a comparison of these two
types of kids.

If we want to know if there is a relationship between some putative scourge of the
youth and violence, we must not select on the dependent variable—that is, we must
compare violent kids to non-violent kids and see whether violent kids are more likely
to engage in that scourge than non-violent kids. (Again, even then, we cant say the
relationship is causal.) The fact that even experts can fail to think clearly about this
means that, for all the expert opinion offered on the topic, we know far less than we
could about the correlates of youth violence.

High School Dropouts
Let s stick, for the moment, with troubled youth. Early twenty-first-century America

has a high school graduation problem. At a time when the economic returns to edu-
cation are at an all-time high, almost a third of students in the public schools fail to
complete high school on time. Over 10 percent never graduate.

In 2006, the Bill and Melinda Gates Foundation decided to put some resources into
addressing this issue. As one step in trying to find a solution, they commissioned a study
on the correlates of dropping out of high school. The reports main thrust is that high
school dropout is not primarily associated with the things you might have guessed—
problems at home, lack of academic preparation, or listening to rock music. Rather, the
big problem seems to be that kids aren t engaged by the educational environment and
find school boring.

As the report states, "nearly half (47 percent) [of dropouts] said a major reason for
dropping out was that classes were not interesting." And "nearly 7 in 10 respondents (69
percent) said they were not motivated or inspired to work hard."

Unfortunately, because correlation requires variation, the evidence in this Gates
Foundation study, just like the evidence presented by the PMRC and the anti-comic
book lobby before it, is pretty uninformative.

The fact that half of high school dropouts report finding school uninteresting does
not mean that finding school uninteresting correlates with dropout. Because correla-
tion requires variation, measuring the correlation has to involve comparing dropouts
to non-dropouts to see whether dropouts are more likely to find school uninteresting.
The Gates Foundation study, because it looks only at high school dropouts, can t make
this comparison.

This point isn't just pedantic. Think about it for a second. Both authors of this book
went to high school. Neither dropped out. However, both authors recall finding some
classes uninteresting. Didn't you?

Now, our personal experiences also don t constitute compelling evidence. So let's see
if we can do a little better in figuring out whether finding classes boring is really a key
predictor of dropout. Researchers at Indiana University did a nationally representative
survey ofhigh school students in 2009. Most ofthese students are not going to drop out,
yet the researchers report that "two out of three respondents (66%) in 2009 are bored
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at least every day in class." That's even more than the 50 percent of dropouts who find
school boring in the Gates Foundation study.

But lets be careful. There are many reasons the Gates Foundation survey and the
Indiana University survey cant be compared. They sample different groups of students,
ask different questions, and are from different years. So we don t want to leap to conclu-
sions. But at the very least, the Indiana University survey should make you worry that
finding school boring is in fact a very common experience for high school students, not
just those who drop out.

The future of American education is serious stuff. It is admirable that the Gates
Foundation is trying to improve education. But their research ignores a key principle of
thinking clearly with data; they are trying to learn about the correlates of educational
failure without any variation in failure versus success. This approach cannot work.

Suicide Attacks

In 2009, University of Chicago professor and noted terrorism expert Robert Pape
testified to the House of Representatives Armed Services Subcommittee on Terrorism.
The topic was General Stanley McChrystals proposal for a forty-thousand-troop surge
to fight the Taliban insurgency in Afghanistan. Here is what Pape had to say:

The picture is clear, the more Western troops have gone to Afghanistan, the more
local residents have viewed themselves as under foreign occupation—and are
using suicide and other terrorism to resist it.. .As my study of suicide terrorism
around the world since 1980 shows, what motivates suicide terrorists is not the
existence of a terrorist sanctuary, but the presence of foreign forces on land they
prize. So, it is little surprise that US troops are producing anti-American suicide
attackers.

Pape goes on to recommend a major rethinking of American military strategy in
Afghanistan. His argument is based on the claim that suicide attacks are primarily
motivated by foreign occupation. His evidence is the data he collected and analyzed
in articles and two books on every suicide terrorist campaign in the world since
1980.

The argument sounds plausible. In Afghanistan, U.S. forces were being attacked by
suicide bombers who wanted the United States to leave the country. Tamil Tiger suicide
bombers attacked a government in Sri Lanka they believed was occupying their home-
land. Palestinian suicide bombers attack Israelis, arguing that they are foreign occupiers.
It sure seems like occupation is a major correlate of suicide attacks.

Now, the claim that virtually every suicide attack is targeted against a foreign
occupier is, we think, debatable. (For instance, while Osama bin Laden claimed the
American troops stationed in Saudi Arabia at the invitation of the Saudi government
were an occupying force, are we sure we agree with him?) But, for the sake of argu-
ment, let s assume that the basic factual claim is correct. Does this mean that there is a
correlation between foreign occupation and suicide attacks?

The answer is, of course, no. Correlation requires variation. To understand the cor-
relates ofsuicide attacks, you can t just study every single instance ofa suicide attack and
look for commonalities. That is selecting on the dependent variable. You must compare
conflicts with suicide attacks to those without.

An easy thing to do in this case is to simply look at every single country and ask:
Are foreign-occupied countries more likely to experience suicide attacks than countries
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that are not foreign occupied? It turns out that a recent study did precisely that com-
parison and found that the answer was no. In particular, if we compare occupied to
non-occupied countries, the difference in likelihood of experiencing suicide violence is
less than 1 percentage point!

What is going on? All those examples of suicide bombers that we listed involved
attacking foreign occupiers. How could it be that there is almost no correlation between
foreign occupation and suicide attacks?

The way to get some intuition is to think about how many foreign occupations there
have been that didn't lead to suicide terrorism. The British occupation ofIreland, despite
sparking a decades-long campaign of violent resistance, never gave rise to suicide ter-
rorism. Basque separatists in Spain fought a decades-long campaign and never resorted
to suicide attacks. At various points during the Cold War (and beyond), the United
States stationed troops in Germany, Japan, South Korea, Grenada, Panama, and Haiti
(arguably, all as much occupations as the putative occupation of Saudi Arabia) but suf-
fered not even one suicide attack in any of these locations. Ifoccupation predicts suicide
violence, what was going on in all these places?

This example has another nice feature. It not only illustrates the mistake of looking
for correlation without variation. It shows you how misled you can be by trying to reach
conclusions by only looking at cases where the phenomenon of interest (here, suicide
attacks) occurs—that is, by selecting on the dependent variable. To see this, it helps to
go back in history a little.

Suppose you'd started collecting data on suicide violence in the early 1980s. By 1986
you'd have recorded thirty-three attacks and over one thousand deaths. Essentially every
single one of those attacks was carried out by the armed Shi'a militia Hezbollah against
American, Israeli, and French targets in Lebanon, including the attack on the U.S.
Marines Barracks in Beirut, which killed 320 people.

If you'd looked for commonalities amongst every suicide attack ever committed in
1986, you might have noticed that they were all carried out by Muslims in the Middle
East. Using the same logic that led to the conclusion that occupation is a major predictor
of suicide attacks, you might have concluded that Islam was the key correlate.

Of course, if you had done a proper comparison, you wouldn't have reached this
conclusion. There are a whole lot of Muslim-majority countries in the world. In 1986,
almost none of them had experienced suicide violence.

Moreover, if you were trying to forecast where the next suicide attack might occur,
this conclusion in 1986 would have led you terribly astray. In 1987, the world saw the
first suicide attack by the Liberation Tigers of Tamil Eelam (Tamil Tigers), a group of
secular separatists in Sri Lanka with no ties to Islam. The attack marked the beginning
ofwhat would become the largest campaign ofsuicide violence the world had ever seen.
When you try to establish correlation without variation, you can get things colossally
wrong.

The World Is Organized to Make Us Select
on the Dependent Variable

As we've seen, it is incredibly easy to fall into the trap of selecting on the depen-
dent variable simply by failing to think clearly. But matters are even worse than that.
The world sometimes seems to be organized in a way that almost forces us to look for
correlation without variation. In this section we look at three ways in which that is true:
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the organization of certain professions, the practice ofpost-mortem analyses following
disasters, and the way we seek life advice.

Doctors Mostly See Sick People
Anyone who has suffered from significant back pain knows that it is rough. When,

inevitably, many ofyou develop back pain, you will likely go to a doctor, who will send
you to get an MRI. Usually, the MRI shows some bulging or herniated discs in the
afflicted back. These bulging discs are taken to be the cause, in some not fully under-
stood way, of the back pain (maybe by impinging a nerve).

The recommendations following this diagnosis can vary greatly. Some doctors want
to operate. Others will refer you to a pain clinic where yet other doctors might stick
you with giant needles with medication that dulls pain and reduces inflammation. Still
others will suggest you try physical therapy and take lots of painkillers.

Here's the kicker. As best we can tell, there is precious little evidence that having a
bulging disc is correlated with back pain. Here are the facts. People with back pain are
quite likely to exhibit disc herniation. Indeed, in a 2011 British study published in the
journal Pain, about two-thirds ofback pain sufferers who were referred for an MRI had
nerve compression as a result of a disc bulge or herniation. This seems like evidence
that those bulging discs really are a problem.

But remember, correlation requires variation. You should be asking yourself: What
about people without back pain? How do their discs look? Good question. The answer
is, they look exactly the same as the peoples discs who do have back pain! A 1994 study
published in the New England Journal ofMedicine found that about two-thirds of peo-
ple who do not suffer from back pain also have a disc bulge or herniation. Once you
compare both variables of interest, the apparent association between bulging discs and
back pain disappears.

It is easy to see how doctors could end up associating bulging discs with back pain.
Even if they are thinking clearly, by dint ofprofession, a doctor is almost doomed not to
look at variation. Sick people go to the doctor. Healthy people tend not to. Your typical
back doctor just doesn't get much of an opportunity to look at the MRIs of people with
well-functioning backs.

Post-Mortems

Another way the world is organized to make us look for correlation without variation
is through institutional rules or procedures. A particularly common example is the way
organizations respond to both great failures and great successes.

Following a crisis or disaster, organizations want to know what went wrong so they
can avoid making similar mistakes in the future. Likewise, following great successes
they want to know what went right to establish best practices. Achieving these goals
is the role of a post-mortem analysis. Looking closely at an instance of great failure
or great success is not, in and of itself, a mistake. Indeed, it is a very sensible starting
point. But, ifyou think clearly, you should already be able to see that, on their own, such
post-mortem procedures are not sufficient to establish correlations between what went
wrong (or right) and existing practices.

The question you should be trying to answer when assessing lessons learned from a
crisis is, Which decisions should have been made differently to avoid the crisis, given
what we knew at the time? However, when assessing lessons learned, we often slip
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Table 4.5. Rehearsal strategies in the week before competitions where your band
performed poorly (made-up data).

Extra Rehearsals

Take It Easy
Total

Do Well

?

?

?

Do Poorly

80

8

88

Total

?

?

?

into answering a slightly different question: Which decisions should have been made
differently to avoid the crisis, given what we know now?

The latter isn't a terribly useful question to answer, for the reasons we've already
talked about in this chapter. Suppose you find some decision that, it turns out, seems to
have led directly to the disaster. After the fact, it is easy to say, "Had we not taken that
action, the disaster wouldn't have happened." But does that mean that you shouldn't
take similar such actions in the future? To know the answer to that, youd want to know
whether disasters are more likely to occur in the presence of such actions than in their
absence. That is, you want to know whether there is a correlation between taking such
actions and disasters occurring. To establish a correlation, you need variation. But a
post-mortem, almost by definition, has no variation. You are only looking at an instance
of the disaster occurring.

To see what we mean a little more intuitively, let's start with a fictional example. Then
we 11 turn to some real cases.

Imagine you are a high school band director preparing for a regional competition
in a week. You have to decide whether to push the kids hard with a grueling schedule
of rehearsals or give them time off so they go into the competition relaxed. You weigh
the pros and cons, deciding preparation is more important than mental state. So you
schedule a week of extra rehearsals. Unfortunately, the band doesn't play terribly well
on the day of the competition, and you are eliminated in the first round.

In your post-mortem analysis you ask the question, What should I have done to
avoid the loss? It occurs to you that you've seen a lot of bands lose competitions in this
same way (i.e., having rehearsed themselves to death the week before), so you decide to
collect some data. You look at the history of all the competitions in which your band
was eliminated in the early rounds. Just like in this year's competition, you find that in
almost every one of these competitions, you scheduled a heavy rehearsal schedule in
the week leading up to the competition.

Let's say you did a week of intensive rehearsing prior to 80 out of 88 losses. The post-
mortem conclusion seems clear. In over 90 percent of the cases where your band was
eliminated early, it was after a week of exhausting rehearsal. Now you feel even more
sure: intensive rehearsal is the wrong strategy. Table 4.5 summarizes what you know so
far from your post-mortem analysis.

But this conclusion doesn't necessarily follow from the data you've collected. In fact,
from this data alone, there's no way to know whether those rehearsals are associated
with performing well or poorly, because you have answered the wrong question.

You don't want to know ifbands did extra rehearsals prior to most ofthe competitions
where they performed poorly. You want to know if extra rehearsals are positively or
negatively correlated with performing well. The answer to that question will help you
know whether those extra rehearsals are a good idea for the next competition.
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Table 4.6. Rehearsal strategy in the week before competitions where your band
performed well or poorly (made-up data).

Extra Rehearsals

Take It Easy
Total

Do Well

300

12

312

Do Poorly

80

8

88

Total

380

20

400

To answer that question, you have to look at the correlation between extra rehearsals
and performing well in competition. But you cant know the correlation from your
post-mortem analysis. Correlation requires variation. Your post-mortem, by focusing
only on poor performances, guarantees that you lack the variation needed to establish
a correlation.

To do a better job, you could look at the history of all the band competitions youVe
participated in to see whether you performed well or poorly. Now you have variation
in both variables and can fill in all the data, as shown in table 4.6.

From this table it is clear that there is in fact a strong positive correlation between sch-
eduling extra rehearsals and performing well. The probability ofyour band performing
well when you rehearsed hard is about 79 percent (|^ ^ .79). By contrast, the probability
ofyour band performing well when you took it easy the week prior to a competition is
only 60 percent (^ = .60). The only reason that the post-mortem turned up the find-
ing that almost every poor performance involved intensive rehearsals is that those extra
rehearsals are so effective that sensible band directors almost always schedule them.

By finding the variation needed to establish the correlation that is actually relevant to
the question at hand, you reach a very different conclusion than you did in your original
post-mortem. Following the loss, it seemed like intensive rehearsals were a bad idea. But
before the fact, given the information available, rehearsing hard was exactly the right
call. Faced with the same situation again, you should probably make the same decision.

This problem is endemic to the process ofpost-mortems following disasters. We tend
to look at the factors that seem like they contributed to the disaster, ask if they were
also present in past disasters, and, when they were, conclude that we should eliminate
those factors in the future. But, in so doing, we are making the same mistake as the band
director. Without variation in whether or not a disaster occurred, we can t actually learn
whether the presence of those factors is correlated with the occurrence of a disaster. So
we don't know if there are lessons to be learned.

We are going to show you what we mean with two examples of post-mortems that
followed major disasters—the Challenger space shuttle explosion in 1986 and the finan-
cial crisis of 2008. In each case, we will see that, while after the fact it sure looks like
some serious and obvious mistakes were made, it is less clear that the decision makers
could have known that they were making mistakes before the fact. Moreover, once we've
grasped this, we will be able to think more clearly about how to design post-mortems
that might be more informative about lessons learned.

The Challenger disaster
On January 28, 1986, the space shuttle Challenger disintegrated off the coast of Cape
Canaveral less than two minutes after launch. Seven crew members were killed. The
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night before the Challenger exploded, a small group of engineers from the NASA
contractor responsible for the shuttles solid rocket boosters predicted that the cold
weather would lead to a catastrophic failure that might well compromise the shuttle. The
concern was that the critical O-ring seals responsible for containing gases produced by
burning rocket fuel were not certified to operate at the low temperatures that preceded
this particular launch. If the O-ring seals failed, the engineers argued, hot pressurized
gas could burn through the rocket s casing, causing disaster.

These predictions, shunted aside by managers at NASA and the engineers' own firm,
proved tragically correct. Many post-mortem analyses focused on NASA's failure to take
these concerns seriously. The conclusion most observers reached was that the disaster
was caused by organizational and cultural failures at NASA that facilitated group-
think and led managers to systematically ignore important objections from experts. For
instance, the Report ofthe Presidential Commission on the Space Shuttle Challenger Acci-
dent (the Rogers Commission) concluded, "Failures in communication ... resulted in
a decision to launch 51 -L based on incomplete and sometimes misleading information,
a conflict between engineering data and management judgements, and a NASA man-
agement structure that permitted internal flight safety problems to bypass key Shuttle
managers."

The Challenger case is interesting. No one questions the physics behind the con-
clusion that the O-rings failed because of cold temperatures. Indeed, the Rogers
Commission included the Nobel Prize-winning physicist Richard Feynman precisely
so they could say with authority whether the engineers were right on the science. They
were. And so, in this sense, launching the shuttle was clearly a mistake.

Because the science is so clear, it seems natural for a post-mortem to ask what it was
about the process that led decision makers to ignore engineers making good scientific
arguments. Here is where our knowledge of the pitfalls of post-mortems should make
us stop and think. We know that, after the fact, the decision to launch was tragically
flawed. But we want to evaluate whether it was a bad decision at the time it was made.
To do so, we need to know about the correlation between the presence of scientifically
valid engineering concerns and the success of shuttle launches. And to know about
that correlation, we need variation; we must compare disastrous launches to successful
launches.

We aren't engineers, so we aren't going to try to weigh in on whether or not the deci-
sion to launch Challenger was reasonable at the time it was made. But we can see how, to
analyze this, a post-mortem commission would need to ask questions they aren t accus-
tomed to asking. Post-mortem commissions askwhat led to the disaster, whether people
had raised the relevant objections, and, if so, why those objections weren't listened to.
In addition, such commissions need to ask whether engineers also raised scientifically
valid concerns prior to lots of successful launches. This doesn't seem implausible. Space
shuttle launches are incredibly complex and dangerous undertakings. Perhaps there is
almost always a scientifically valid reason for serious concern. If so, then there actu-
ally wouldn't be much (if any) correlation between the presence of such concerns and
launch success. If this is the case, unless you are prepared to simply shut down the space
program, it isn't fair to say that launching following a scientifically plausible objection
by an engineer is always a mistake. This is the sort of thing one would want to know
from a post-mortem commission before reaching conclusions about changing NASA's
organizational culture or management practices.
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Thefinancial crisis of2008
The financial crisis that shook the world economy in 2007 and 2008 began with a crash
in the U.S. subprime housing market. This crash had ripple effects across the banking
sector that eventually spread throughout the world. Understandably, in the wake of this
crisis—at the time, the worst since the Great Depression—policy makers and the pub-
lic alike were interested in identifying early warning indicators that might help them
forecast and forestall future crises.

Perhaps the most important post-mortem analysis attempting to provide such early
warning indicators was the book This Time Is Different by the economists Carmen M.
Reinhart and Kenneth S. Rogoff. Reinhart and Rogoff collected and analyzed data on
every major financial crisis of the last eight hundred years. By doing so, they argued,
they could identify a few key indicators that almost always precede such a crisis. These
include uncommonly large current account deficits (that is, goods and services exported
minus imported net of income from abroad), asset price bubbles, and excessive bor-
rowing. For instance, in 2006 the United States had a current account deficit close to
7 percent of GDP, a bubble in the housing market, and ballooning federal debt. Thus,
Reinhart and Rogoffconclude, "we've been here before." The implication is that the 2008
U.S. financial crisis could have been predicted by the presence ofthose same factors that
seem to characterize financial crises across time and around the globe. Similar patterns
were true before the financial crises in Latin America in the early 2000s, East Asia in
the 1990s, Nordic countries in the 1980s, and so on into history.

The problem with this argument is the same as in our earlier examples. Early warning
indicators should be correlates of financial crises. Because correlation requires vari-
ation, to know if current account deficits, soaring asset prices, and heavy borrowing
correlate with financial crises, we need variation in crises. That is, we need to know not
only that these factors tend to be present when crises occur but also how frequently
they are present when crises do not occur. Without such variation, we cannot establish
a correlation.

Reinhart and Rogoff s plan ofstudying every major financial crisis for eight hundred
years cannot answer the question. And there are reasons to be worried about their con-
clusions. As the MIT political scientist David Andrew Singer points out, one need only
look at recent history to cast some doubt on the story. For instance, in the late 1990s
the United States had all the early warning signs for a financial crisis. There were large
current account deficits as a result of massive foreign investment in dot-coms. More-
over, when the dot-com bubble burst, "it wiped out approximately $5 trillion in market
capitalization." Yet no financial crisis occurred. This, of course, is just one anecdote. But
it should make you wonder whether the factors Reinhart and Rogoff point to are really
good predictors of financial crises or just common features of the world that happen to
exist both when financial crises occur and when they don t occur.

Life Advice

We've been arguing that our world is organized in ways that lead us to try to figure
out the correlates of success or failure without looking at variation, even though it won't
work. It is important to see that this problem isn't confined to big institutional settings.
We are all victims of it every day in many small ways.
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One simple example is the ways in which we seek life advice, which almost always
involves asking successful people how it is that they succeeded. In our business, for
instance, graduate students are encouraged to ask senior professors what they did to
succeed on the job market. We imagine something similar is true in other professions.
There is certainly no shortage of self-help books describing the habits of successful
people.

But such wisdom suffers from exactly the problems we ve been pointing to. Successful
people, reflecting on their lives, are inclined to identify a few decisions they made or a
few personal characteristics that seem important and offer them as advice to the next
generation. But those successful people typically have no idea whether many other, less
successful people made similar decisions or had similar characteristics. That is, their
introspection about the correlates of success lacks variation. As such, successful people
don t really know whether the lessons they point to in telling their personal stories are
correlates of success or not. And so, we leave you with this happy bit ofwisdom of our
own: Beware life advice. Most of it is probably nonsense.

Wrapping Up
Correlation requires variation. But unclear thinking and organizational mandates

often lead us to select on the dependent variable—trying to establish the correlates of
some phenomenon by only looking at instances when it occurred. It requires careful
attention to make sure you aren t falling into this trap, whether you are doing quantita-
tive analysis or just trying to think informally about evidence. Even just forcing yourself
to think about whether you could fill in all four cells of one of our two-by-two tables is
a good starting point for avoiding looking for correlation without variation.

You can be even more rigorous by using quantitative techniques to measure correla-
tions. The most important such technique is called regression, the topic of chapter 5.

Key Term
• Selecting on the dependent variable: Examining only instances when the phe-

nomenon of interest occurred, rather than comparing cases where it occurred
to cases where it did not occur.

Exercises

4.1 In chapter 2 we discussed the differences between statements about corre-
lations and other factual statements that do not convey information about
a correlation. Now that you have a deeper understanding that correlation
requires variation, consider the following statements. Which ones describe a
correlation, and which ones do not?

(a) Most top-performing schools have small student bodies.
(b) Married people are typically happier than unmarried people.
(c) Among professionals, taller basketball players tend to have lower free-

throw percentages than shorter players.
(d) The locations in the United States with the highest cancer rates are

typically small towns.
(e) Older houses are more likely to have lead paint than newer ones.
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(f) Most colds caught in Cook County are caught on cold days. (This one
also doubles as a tongue twister.)

At least twenty billionaires dropped out of college before earning their
fortunes, including Bill Gates and Mark Zuckerberg.
(a) Does this mean that dropping out of college is correlated with

becoming a billionaire? Why or why not?
(b) Draw the two-by-two table that would allow you to assess whether

dropping out of college is correlated with becoming a billionaire.
Lets assume that exactly twenty people have dropped out of college
and become billionaires, so you know what to put in one of the four
cells. Make your best guess for the other cells. At the time of this
writing, there are about 7.S billion people in the world, and about
two thousand billionaires. Do you think there is a positive or neg-
ative correlation between dropping out of college and becoming a
billionaire?

(c) Given your guesses from part (b), what proportion of the non-
billionaires would need to be college dropouts in order for the
correlation to be negative? What proportion of the non-billionaires
would need to be college dropouts in order for the correlation to be
positive?

(d) If you're currently a college student deciding whether you want to drop
out in the hopes of becoming a billionaire, you may want to restrict
attention to people who actually started college. Do you think the cor-
relation between dropping out of college and becoming a billionaire is
more or less likely to be positive ifwe restrict attention to just people
who start college?

(e) About 7 percent of the world's population has a college degree. And
about a third of people who start college complete it. Ifwe assume that
everyone who becomes a billionaire started college, you should now
have all the information you need to assess the correlation between
becoming a billionaire and dropping out of college among those who
start college. Is it positive, negative, or zero?

Identify one recent case where an analyst made the mistake discussed in
this chapter. That is, find a case where someone (at least implicitly) makes
a claim about a correlation but they don't have variation in one of their
variables. Your example might come from a newspaper article, an aca-
demic study, a policy memo, or a statement from a politician or business
leader.

(a) Summarize the claim being made (perhaps implicitly) and explain why
the evidence does not necessarily support the claim.

(b) Explain what additional data collection and analysis would allow the
analyst to assess the correlation of interest.

(c) Draw a two-by-two table that illustrates your argument, and discuss
what the unknown numbers in the table would have to be in order for

the correlation of interest to be positive, negative, or zero.
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To read about the high rates of disc bulges and herniation among people with and
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and back pain), see

Michael J. DePalma, Jessica M. Ketchum, and Thomas Saullo. 2011. "What Is the
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CHAPTER 5

Regression for Describing and Forecasting

What You'll Learn

• Regression involves finding the line ofbest fit through some data. It is perhaps
the most important tool for describing the relationship between two or more
variables.

• Under certain conditions, regression can be useful for forecasting.
• Things can go wrong with regression, especially if we have a small amount of

data. Among the most important problems that can arise is overfitting.
• Where did regression come from?

Introduction

In chapter 2, we defined correlation and discussed its three uses: description, forecast-
ing, and causal inference. We also talked about a variety ofways to quantify correlations,
including the slope ofthe regression line, the covariance, and the correlation coefficient.
Regression lines are the most common and useful of these. In this chapter, we are going
to take a deeper dive into regression to make sure we are all thinking clearly about this
important technique.

Regression Basics
Let s return to the data on crime and temperature in Chicago that we discussed back

in chapter 2. Figure 5.1 reminds you what a scatter plot of that data looks like.
As you can see just by looking at the data, generally speaking, warmer days have

more crime. But you sometimes want to be more precise about the relationship. If you
worked for the Chicago Police Department and your boss asked you to summarize the
relationship between temperature and crime, they probably wouldn't be particularly
pleased if you just showed up with this graph. They might want a simple summary of
the relationship that's easy to understand and communicate to people making policy
decisions. This is where linear regression comes in.

A line of best fit provides just the kind of accessible summary of the relationship
between temperature and crime that we are looking for. Such a line, if well chosen,
will do two things. First, for any given temperature, the line gives us a reasonable
approximation (or prediction) of the amount of crime. And second, as we discussed
in chapter 2, the slope of the line tells us something about the sign and magnitude of
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Figure 5.1. Number of reported crimes and the temperature in degrees Fahrenheit in Chicago across days
in 2018.

the correlation between the two variables—that is, it tells us approximately how much
crime changes as the temperature changes. So lets figure out how we identify the line
ofbest fit, so that we can think clearly about how to interpret and communicate what it
has to tell us.

With the exception of completely vertical lines (which wouldn't provide a useful
description or forecast anyway), all hypothetical lines that we could draw on the graph
of figure 5.1 can be described by what is called a regression equation of the following
form:

Predicted Crime = a + ft • Temperature

A regression equation expresses a linear relationship between a dependent (or out-
come) variable on the left-hand side ofthe equation and an independent (or explanatory)
variable on the right-hand side of the equation. (As we will see later in the chapter, there
can be more than one explanatory variable on the right-hand side.) The dependent
variable corresponds to the outcome we are trying to describe, predict, or explain. An
independent variable corresponds to something we are using to try to describe, predict,
or explain the dependent variable.

The regression equation relates the dependent and independent variables linearly
through regression parameters. The regression parameters define the particular line we
are drawing. In our regression equation above, the regression parameters are a and ft
(the Greek letters alpha and beta). The regression parameter a is called the intercept, it
is the predicted number of a crimes on a day when the average temperature is 0 degrees
Fahrenheit. The regression parameter ft is the slope; it is the amount that predicted
crime goes up with each degree Fahrenheit. Any possible line on the graph corresponds
to one particular combination ofa and p. (As we will see later in this chapter, there can
be more than two regression parameters if there is more than one independent variable.
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o

600
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And as we will see later in the book, you are free to represent the regression parameters
with letters other than a and f$ when convenient.)

Of course, we don t want to try to describe or predict crime on the basis of tempera-
ture using any arbitrary line. The wrong line will yield really bad forecasts. We want to
use the line that best fits the data.

In order to find the values of a and ft that give us the line that best fits the data,
we need to start by defining what the term bestfits means. We do so quantitatively by
choosing a measure of how well any given line does at summarizing or fitting the data.
Then we find (or ask our computer to find) the values ofa and ft that result in the best
possible value of that measure. Those values of a and ft describe the line of best fit for
the data according to the measure we choose.

The measure we choose to evaluate fit is important. As we mentioned briefly in chap-
ter 2, the most commonly used measure (and the one on which we focus) is the sum of
squared errors. So let s start by being a bit more precise about what this measure means.

For any a and f$ we choose, our line gives us a prediction of the level of crime on
a day with any given temperature. For instance, suppose we chose a = 650 and f$ = 2.
Then, on a day (like January 26, 2018) when the average temperature was 46 degrees
Fahrenheit, our prediction of the number of crimes is

Predicted Crime = 650 + 2 • 46 = 742.

Of course, the lines prediction won t be exactly right—we sacrifice some accuracy in
order to get a parsimonious summary of the data. For instance, in reality, the number
of crimes on January 26, 2018, was actually 759. The difference between the true value
of the dependent variable and our line s prediction for any given observation is called
that observations error:

error/ = Crime/ — Predicted Crime/

So, for instance, given our choice of a and /J, the error for January 26, 2018, is 759 —
742=17.

Put differently, for any given line we choose (i.e., values ofa and /0, we can describe
any observation i as follows:

Crime/ = « + /}• Temperature^- + error/
Predicted Crime, Crime/ - Predicted Crime-

Figure 5.2 draws a line with a = 650 and f$ = 2 on top of the data and shows how the
errors are measured. (As we will see later, this turns out not to be the line ofbest fit.) The
errors are the vertical lines from a data point to the line. We only drew the errors for a
few data points in order to avoid the figure getting too messy. However, to evaluate the
fit of a line, we would actually start by calculating the error for every single data point.

The error for any given data point can be positive (if the data point lies above the
line) or negative (if the data point lies below the line). But we want a measure of how
far the data point is from the line. We don t care whether it is above or below. So, to
get such a measure, we next square the error for each data point. The squared error
is positive regardless of whether the data point lies above or below the line. It is just a
measure ofhow far the data point is from the line.
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Figure 5.2. Fitting a line through crime and temperature (in degrees Fahrenheit), showing some of the
errors.

We add up all those squared errors to get the sum ofsquared errors (SSE). The figure
reports the SSE for this particular line in the upper left-hand corner.

We can follow this procedure to get the sum of squared errors for the line associated
with any a and /?. Different lines have different SSEs. The bigger the sum of squared
errors, the further the data is from the line, on average.

The line we are looking for is the one with the smallest sum of squared errors. That
is, we find (your computer knows how) the values of the parameters a and ft that
minimize the sum of squared errors. This process is call ordinary least squares (OLS)
regression. We label the values of the parameters that minimize the sum of the squared
errors as a0LS and /30LS. These values of the parameters are called the ordinary least
squares (OLS) regression coefficients. The line associated with these parameters is the
OLS regression line. It is our line ofbest fit.

There's a lot of lingo to describe finding the a and f$ that minimize the sum of
squared errors. Sometimes we say that we're "regressing crime on temperature." When
we're in a long-winded mood, we'll say that we're "running an ordinary least squares
regression where crime is the dependent variable and temperature is the independent
variable."

Figure 5.3 shows the crime and temperature data with four different lines drawn
through it, corresponding to different combinations ofa and /?. For each line, the figure
reports the a, f$ and the sum of squared errors. A few of the errors are shown visually
with vertical black lines. The bottom-right panel shows the OLS regression line—the
line that minimizes the sum of squared errors. Visually, we can see that this line is a
better approximation of the data than the other three options. In practice, we don't have
to use trial and error to find this line. Instead, we'll ask our computer to do the work for
us, and it, using linear algebra, will find the values ofa and ft that minimize the sum of
squared errors before you can blink.

a = 650

P = 2

SSE = 1,542,564
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Figure 5.3. Fitting different lines through crime and temperature, showing some of the errors.

How do we interpret the OLS regression line? As we see in the figure, rounding to the
nearest integer, the intercept (a0LS) is 567 and the slope (/30LS) is 3. In other words, the
OLS regression line is telling us that, in 2018, on days when the average temperature at
Midway Airport was 0 degrees, there were about 567 crimes on average, and for every
additional degree Fahrenheit, the average number of crimes increased by about 3. So,
for example, the predicted amount of crime on a day when the temperature was 46
degress (like January 26,2018) is

Predicted Crime = 567 + 3 • 46 = 705.

We didn't have to choose our regression line by minimizing the sum of squared
errors. Depending on our goals, we could have instead minimized the sum of the abso-
lute value of the errors. Or we could have minimized the sum of errors raised to the
fourth power. The possibilities are endless.

We like the sum of squared errors for a couple reasons. First, minimizing the sum
of squared errors turns out to provide the best linear approximation to another useful
function: the conditional mean function. The conditional mean function is a function
that tells you the mean (average) of some variable conditional on the value of some
other variables. Here the particular conditional mean function we are interested in is
the one that gives the mean number of crimes conditional on temperature.

Suppose that for, say, each degree Fahrenheit, you calculated the average number
of crimes on days with that temperature and plotted them. That gives you a graph of
a conditional mean function—for each degree of temperature, it tells you the average
number of crimes. In figure 5.4, the light-gray dots are our raw crime and temperature
data and the large black dots are the mean number of crimes conditional on being in a

o
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Figure 5.4. The regression line through the data is also the best linear approximation to the conditional
means.

5 degree Fahrenheit bin (0-5 degrees, 6-10 degrees, and so on). Conditional means are
another reasonable way to predict crime on the basis of temperature. However, the con-
ditional mean function isn't as parsimonious as a line—to summarize the conditional
mean function, you need a list of the average level of crime for each temperature bin,
whereas a line is summarized by two parameters. But, as you can see, the regression
line, in addition to being the line of best fit through the raw data, is also a very good
approximation of these conditional means—indeed, it is the best linear approximation
of them. So, ifyou are interested in conditional means, the line that minimizes the sum
of squared errors is a good way to summarize them.

Of course, you might not be interested in means. Perhaps, instead, you want to
describe or predict the conditional median. In that case, it turns out that you'd want
to draw the line that minimizes the sum of the absolute values of the errors. As we said,
there are a variety of reasonable choices.

The second reason that people focus on minimizing the sum of squared errors is
historical. As indicated above, there is an easy way for your computer to calculate the
values of a and f$ that minimizes the sum of squared errors using linear algebra; as a
result, OLS coefficients can be calculated quite quickly. But back when people did this by
hand, or even when computers were much slower, this was an important consideration.
As computational speeds have improved, however, this consideration has become less
relevant.

Linear Regression, Non-Linear Data
What do we do when we want to use linear regression but our data is not well

described by a line? To start to think about this, let s return to the data we looked at
in our discussion ofvoter turnout in chapter 2. Remember, there we wanted to describe
the relationship between age and voter turnout—perhaps to know whether younger
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Figure 5.5. Voter turnout rate by age in the 2014 U.S. midterm election.

people are politically underrepresented or perhaps to decide whom to target with a
get-out-the-vote drive.

Figure 5.5 shows the voter turnout rate for each year of age between 18 and 68 in the
2014 midterm elections. Notice, in this data, the observation is not an individual; it is an
age cohort. As with temperature and crime, the relationship between age and turnout
is potentially quite complex. What if we want to summarize the average relationship
between age and turnout in a simple way? Or what if we didn't have the data for 31-
year-olds (omitted from the figure) and we wanted to come up with our best guess for
their turnout level? Or what if we wanted to predict turnout based on age in the 2018
election? Linear regression could be useful for all of these purposes.

Looking at the graph, the relationship between age and turnout appears approxi-
mately linear, at least for this range of the data. In other words, we could probably draw
a line on this graph that comes pretty close to each of the data points. And if we did
draw such a line, this would be fairly useful for both description and forecasting.

Lets try out OLS regression with our voter turnout data. We could again describe
any line with the following regression equation:

Predicted Turnout = a + ft • Age

Our statistical software program tells us that, for this data, a0LS = — .1381 and
pOLS _ 0103. With these two numbers, we can draw the line that best fits the data,
and we can generate predicted turnout for any given age. Figure 5.6 shows how the OLS
regression line looks.

It is important to pause and think clearly about the substantive meaning of the
regression line.

The number aOLSis the intercept. It tells us that the predicted turnout rate ofpeople
age zero is —.1381, or about —14 percent. That's a pretty weird prediction. Turnout rates
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Figure 5.6. OLS regression line through voter turnout rate by age.

cant be negative. And infants cant vote. We know that the turnout rate for zero-year-
olds is zero.

Does this mean that the regression is meaningless or wrong? No. It reflects the fact
that the regression isn't super useful for describing or forecasting the voting behavior
of babies. That isn't surprising. Our regression line was chosen to do a good job of
approximating our data. We shouldn't expect it to do a terribly good job approximating
the behavior of people with ages well outside the range of our data. And we don't have
any data on people younger than 18.

The number /30LS is the slope. It tells us that, on average, within the range of our
data, each additional year of age corresponds to an increase in turnout of just over 1
percentage point. In other words, on average, between the ages of 19 and 68, people are
about 1 percentage point more likely to vote than people who are just one year younger
than themselves. That's interesting. And it accumulates across years, implying that 68-
year-olds are approximately 50 percentage points more likely to vote than are 18-year-
olds, which is exactly what we see in the data.

The regression line is doing its job pretty well. It gives us a fairly simple and quick
summary of the relationship between age and turnout for people between the ages of 18
and 68 in the 2014 election. In this particular election, 18-year-olds voted at an approx-
imate rate of4.8 percent ((—.1381 + .0103 • 18) • 100 ^ 4.8), and then turnout increases
by just over 1 percentage point for every additional year in age. Although this summary
doesn't get turnout exactly right for each age group, it gets pretty darn close. And, in
our view, what is lost in accuracy (compared to, say, just listing turnout rates by age) is
more than made up for in parsimony and ease of communication.

We can also use a0LS and f}0LS to predict turnout levels for voters whose ages are
not in our data. For reasons we've already discussed, we don't want to extrapolate too
far. We can't extrapolate back to infants, or even 17-year-olds, since they aren't eligible
to vote. We probably also don't want to extrapolate to people too much older than 68.
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Figure 5.7. Using the regression line to predict voter turnout rate (poorly) for out-of-sample ages.

Our predictions are likely to be pretty good for 69- and 70-year-olds, for whom we pre-
dict turnout rates of approximately 57.3 percent ((—.1381 + .0103 • 69) • 100) and 58.3
percent ((—.1381 + .0103 • 70) • 100), respectively. But the further we get away from
the range of our actual data, the more we should worry about the reliability of our
predictions.

The spot where we might be most confident in our predictions is for 31-year-olds.
For whatever reason, our graph shows no data on that age group. (Here that's because
we purposefully omitted it for illustrative purposes. But if you start working with data
you'll find that this sort of thing happens all the time. Maybe the county clerk spilled
coffee on the voter returns for 31 -year-olds.) But we have lots ofdata on people with ages
on both sides of 31. So we can probably generate pretty good predictions for turnout by
31-year-olds. Lets see.

Our regression equation predicts a turnout rate for 31-year-olds of just over 18 per-
cent (—.1381 + .0103 • 31) • 100 = 18.12. Since we actually do have the data, we can see
how well our prediction pans out by adding the 31-year-olds back in to the graph.

Figure 5.7 plots the same regression line, fit to data on 18- to 68-year-olds, excluding
31-year-olds. But it introduces some previously excluded data points, plotting them as
hollow circles. The new data include 31-year-olds, as well as folks ages 69-88.

With 31-year-olds, we hit the mark almost perfectly: we predicted a turnout rate of
18.12 percent, and the true rate was 18.11 percent. With 69- to 72-year-olds, we did okay,
though not as well. But our predictions start performing really poorly for the oldest
individuals.

That's because the relationship between age and turnout seems to be quite different
for the elderly. For younger people, turnout is increasing in age. But once people get
past the age of 70 or so, turnout appears to drop with age. As a result, trying to predict
the difference in voter turnout between an 80-year-old and an 88-year-old using data on
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Figure 5.8. A regression ofvoter turnout rate on age for all ages.

voter turnout of 18- to 68-year-olds doesn't work very well. Just like with our prediction
of a —14 percent turnout rate for infants, this illustrates what can go wrong when we
try to extrapolate our predictions outside the range of the data that we used to generate
the regression line on which those predictions are based.

Suppose we in fact wanted to analyze the relationship between age and turnout for
everyone between the ages of 18 and 88. By just looking at the data, we can see that the
relationship is not linear. How should we account for this non-linearity?

One approach would be to fit a new linear regression, now using all the data. Even if
the data itself doesn't sit on a line, we can still find the line that minimizes the sum of
squared errors. As you can see in figure 5.8, there is now a lot more error, since we are
fitting a line to data that have a clearly non-linear relationship.

A second approach is to keep fitting regression lines, but use a different line for dif-
ferent parts of the data. For instance, we could find the line that minimizes the sum of
squared errors for the data on people between 16 and 68y %. second line that minimizes
the sum of squared errors for the data on people ages 69-78, and a third line for that
data on people ages 79-88. This would not be as parsimonious or easily communicated
as running a single regression—instead of two parameters (a and ^), we would have six
parameters (a separate a and ft for each regression line). But, as you can see in figure 5.9,
the payoffwe get for that lack of parsimony is a tighter fit to the data (i.e., less error).

We hinted at a third way to deal with non-linearity back in chapter 2. There's no
reason that our regression equation has to have only one explanatory variable. If we
know that there's a non-linear relationship between turnout and age, maybe we want to
consider transforming the age variable into age-squared, age-cubed, and so on.

When we took this approach in chapter 2, we kept the regression simple. We just
regressed the outcome variable on the explanatory variable squared. But we can do
something more general than that. Instead of regressing voter turnout on just age or
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Figure 5.9. Separate regression lines through voter turnout rate and age for ages 16-68,69-78, and 79-88.

just age-squared, we can regress it on both. This allows us to fit a function that is more
flexible than a line to our data. Of course, for each new variable we include, that's a new
coefficient that we have to vary when we minimize the sum of squared errors. But our
computer can handle that.

In principle, we don t even have to restrict ourselves to different transformations of
the age variable. We could also include other factors—average income or average voter
registration status—which might further improve our predictions. We'll come back to
that possibility in chapter 10. For now, lets stick to transformations of our age variable.

With just one explanatory variable, it is easy to visualize what we are doing when
we run a regression. We are just drawing a line through the data in a two-dimensional
space—in particular, the line that minimizes the sum of squared errors.

With two explanatoryvariables, things are a little more abstract, but still manageable.
Now we can think about finding a line going through our data in a three-dimensional
space. Just picture adding a third axis coming out of the page toward you in our graphs.
That axis will have the scale of the second explanatory variable (perhaps age-squared).
Now the data forms a cloud in that three-dimensional space. Regression is still just
drawing a line that minimizes the sum of squared errors, but now the line passes
through that cloud of three-dimensional data points. Describing this line requires three
parameters instead oftwo: the intercept (a), the slope with respect to changes in the first
explanatory variable (we can call this /?i), and the slope with respect to changes in the
second explanatory variable (we can call this $2).

Once we go beyond two explanatory variables, its hard to visualize the regression
line, since most of us cant think in four or more dimensions. But you can analogize.
You understand what it means to find the line that minimizes the sum ofsquared errors
with one or two explanatoryvariables. There is no reason we cant do the same with ten.
Certainly your computer will have no trouble calculating the sum of squared errors and
finding the OLS regression coefficients.
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Figure 5.10. Fitting regressions through voter turnout rate with different polynomials of age.

Let's see how this works in practice. We replicated the regression ofvoter turnout on
age but also included age-squared as an explanatoryvariable. That is, we considered the
following equation:

Predicted Turnout = a + /3\ • Age + fc * Age2

Once our computer calculates the associated regression coefficients, we can plug in
any value of age and the associated value of age-squared to get a predicted level of
turnout. So, for instance, if we wanted to know the predicted turnout of 31-year-olds,
we'd plug in 31 for age and 312 = 961 for age-squared.

And we don't have to stop at age and age-squared. Figure 5.10 shows the predicted
turnout from different regressions, one with age and age-squared as explanatory vari-
ables (this is called a second-order polynomial); another with age, age-squared, and age-
cubed as explanatory variables (third-order polynomial); another with a fourth-order
polynomial; and another with a tenth-order polynomial!

The overall relationship between age and turnout is pretty complicated. As we've
seen, its approximately linear from 18 to 68, but then it takes a hard turn sometime
after that. As a result, if we just include age, we dont do a great job fitting the data.
Similarly, we see here that a regression with age and age-squared also doesn't do that well
because the relationship in the data is poorly approximated by a quadratic curve. Our
predictions get better and better as we include more and more explanatory variables,
since we have more and more parameters that we can play around with to fit the data.
By the time we get to a fourth-order polynomial, the fit looks quite good.
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Figure 5.11. Using regressions through voter turnout rate and different polynomials of age to predict voter
turnout for out-of-sample ages.

Ofcourse, the tenth-order polynomial does the best job approximating the data—the
more explanatoryvariables included in the regression, the better the fit. But that doesn't
necessarily mean that you want to include as many explanatory variables as possible.
There are trade-offs.

For one, remember that part of our goal is to describe the data in a simple and par-
simonious manner that is easy to understand and communicate. Describing the data
with eleven parameters (a plus f$\ through P\q) isn't much better in this regard than
simply listing the turnout rate for each age group.

Furthermore, we often want to make out-of-sample predictions, forecasting voter
turnout for age groups not actually observed in our data (like 90-year-olds). Adding
more and more terms often results in worse out-of-sample predictions. The reason is
that, as the function we use becomes more and more flexible, it can read every little
bump and hiccup in the data as meaningful, even when they aren't.

To illustrate this point, we repeated the analyses above, but ran the regressions only
using data on people ages 1S-7S. Then we can see how well we do making out-of-sample
predictions of the turnout rates for people with ages above 78. (These predictions are
out-of-sample because we purposefully removed voters over the age of 78 from our
data.) Figure 5.11 shows the results. The data used for fitting the regression are plotted
in black. The data we are attempting to predict are shown as hollow circles. And the gray
curve represents the predicted values from the regression. As you can see, the fourth-
order polynomial does well at predicting turnout for the oldest voters. But the tenth-
order polynomial is a disaster!
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The Problem of Overfitting
The example we just saw, where the tenth-order polynomial performed worse than

the fourth-order polynomial at out-of-sample prediction, is an instance of a more gen-
eral phenomenon called overfitting. Ifwe test enough explanatoryvariables, we re bound
to find some that correlate with the outcome in our data just by chance. The tenth-
order polynomial regression was using meaningless correlations between high-order
transformations of the age variable and voter turnout among one set of voters to try
to predict turnout among another set ofvoters. Unsurprisingly, those meaningless cor-
relations did not continue to hold. To better understand overfitting, lets talk about a
somewhat more realistic forecasting problem.

Forecasting Presidential Elections
Americans are really interested in predicting the outcomes ofupcoming presidential

elections. When we tell people that we are political scientists, by far the most common
question we get is "Who's going to win the next election?" We tend to disappoint with
our answers, since election prediction is not what most political scientists spend their
time on.

However, compared to most complex political phenomena, presidential elections are
actually rather predictable. Even months before the election, we often have a pretty good
idea ofwho is going to win based on how the economy is doing. And in the final weeks
before Election Day, the average of polls usually gets within 1 or 2 percentage points of
the final vote share. The journalist Nate Silver established himself as a giant of political
data analytics by essentially averaging polls.

Ofcourse, the fact that we can usually predict the vote share within 1 or 2 percentage
points doesn't mean we always know who's going to win. Most presidential elections are
highly competitive, and the Electoral College allows some candidates to win the elec-
tion even while losing the popular vote. In close races, like in 2000 or 2016, given the
available information on the morning ofthe election, there was probably no way an hon-
est quantitative analyst could have been more than 90 percent sure that any particular
candidate was going to win.

Although we said most political scientists don t spend much time trying to predict
election outcomes, some do. The academic journal PS: Political Science & Politics typi-
cally publishes a symposium before each presidential election with various attempts to
predict the outcome using quantitative data and analyses. Often, the goal of these anal-
yses is to see how well researchers can predict the upcoming election results without
using polling data. For example, we might see how well we could predict vote share if
we just knew the fundamentals, like economic growth and incumbency status.

To make such a prediction, a researcher might run a regression using historical data
in which each observation is an election, the outcome variable is the two-party vote
share of the incumbent party in that election, and the various explanatory variables are
features ofthat particular election like economic growth in the election year, whether the
incumbent is seeking reelection, the number of war casualties over the past four years,
and so on. Having obtained the regression coefficients based on data from previous
elections, the researcher can then plug in the values for explanatory variables from the
current election and obtain a forecast for the upcoming two-party vote share. Because
many other analysts are doing the exact same thing, the goal is often to find some new
variable to include in your own regression in order to improve its predictive power.
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Mimicking this approach, we ran a regression predicting the incumbent s vote share
in presidential elections between 1948 and 2012. To be thorough, we included ten dif-
ferent independent variables, all ofwhich have been identified by political scientists as
factors that might help us predict election results. Specifically, we included an indica-
tor for whether the incumbent is a Democrat or Republican; an indicator for whether
the incumbent is seeking reelection; GDP growth in years 1, 2, 3, and 4 of the most
recent presidential term; an indicator for whether the country was involved in a major
war at the time; a count of the number of consecutive terms in which the same party
has been in power (many people expect that voters are more likely to replace a party
that has been in power for a long time); the unemployment rate; and the change in the
unemployment rate over the last four years.

We have good reasons to expect that these ten variables should help us predict pres-
idential election results, and at first glance, it looks like they do. The r2 statistic from
the regression is .83, meaning that 83 percent of the variation in incumbent vote share
appears to be accounted for by these variables. Furthermore, when we calculate pre-
dicted values from this regression, they only miss the actual vote share by an average of
1.7 percentage points.

The apparent success ofour regression, however, is misleading. It turns out, ifwe had
simply generated ten random variables (which we have done in computer simulations)
and run the same regression using those meaningless numbers as our explanatory vari-
ables, we would have averaged an r2 statistic of around .67 and an average error of 2.4
percentage points. This is almost as good as our predictions using real data, even though
our ten randomly generated variables should contain no information about the likely
outcome of the election at all.

This is quite surprising. Why is it true? Whenyou generate a bunch ofentirely random
variables, some ofthem are going to end up correlated with your outcome just by chance.
In a regression, those meaningless variables will appear to predict the outcome. But, of
course, they don t really. If you try to use the forecasts generated by the relationship
between those meaningless variables and past outcomes to predict future outcomes,
you will fail miserably. Their predictive power is just an illusion created by chance.

One way to try to assess and mitigate overfitting is by holding some data out ofyour
regression analysis and conducting out-of-sample tests—as we did with voters over the
age of 78 in the previous section. In the context of predicting election outcomes, when
generating a prediction for the vote share in 2012, we could leave the 2012 data out of
the sample, run a regression using all the other elections, generate a predicted value
for 2012 using those regression coefficients and the true values of the explanatory vari-
ables for 2012, and see how our predictions fare. In principle, we could do this for each
year in our data set—remove one observation, run our regression, generate a predicted
value for that observation, check our prediction against the truth, and repeat for each
observation.

When we subject our regression with ten explanatoryvariables to out-of-sample test-
ing, it fares much worse than it first appeared. The average prediction error jumps up
from 1.7 to 5.6 percentage points. We doubt that any campaign would hire a statis-
tical consultant who could only promise to predict the election results within 5 or 6
percentage points, on average. Even more embarrassing, a naive prediction based on a
simple average of the other elections in the sample gets within 4.6 percentage points,
on average. In other words, the overfitted regression that we thought was giving us
such accurate predictions is actually worse than a regression that uses no explanatory
variables at all.
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Table 5.1. Output of regression of average voter turnout on age.

DV = Voter Turnout

Age .0103
(.0001)

Constant -.1381

(.0066)
r2 .991
Root-MSE .151

Observations 50

Of course, when analysts are careful to avoid overfitting, they can generate useful
predictions. A simple regression that uses only GDP growth in year 4 as an explana-
tory variable produces an out-of-sample prediction error of 3.8 percentage points,
beating the model with no explanatory variables. And if we included poll results as
Nate Silver does, we would do even better. Nonetheless, it's easy to trick yourself into
thinking you're generating good predictions when you're not. Careful analysts only
include variables in their regression that they believe are genuinely correlated with
the outcome, they avoid having too many variables in their regression relative to the
number ofobservations, and they validate their predictive strategy using out-of-sample
testing.

How Regression Is Presented
Sometimes the outputs of a regression are presented graphically, as we have done

thus far. But the most common form in which regression results are presented is in a
table. For instance, table 5.1 shows how the output of a regression of voter turnout on
age might be presented.

You don't quite know what everything in this table means yet (we will come to stan-
dard errors, the number in parentheses, in chapter 6), but most everything should be
familiar. The number in the Constant row is the intercept, a0LS. The number in the
Age row is the slope of the regression line, /30LS. We've also already discussed the idea
of r-squared in chapter 2: it is the amount of the variance in voter turnout that can be
predicted from age. And Root-MSE is the square root of the mean squared error, which
gives you some sense ofhow far off, on average, our regression predictions are from the
real data points.

A Brief Intellectual History of Regression
As far as historians of statistics can tell, regression was invented (or was it discov-

ered?) around the end of the nineteenth century. The first published instance of a linear
regression is in the appendix to a briefbook entitled New Methodsfor the Determination
of the Orbits ofComets by the French mathematician Adrien-Marie Legendre. This was
work with important implications for geodesy—the study of the measurement of the
earth, which was a high-stakes problem, given the economic and military importance
of navigation in the eighteenth century.
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Legendre s status as the discoverer ofregression was contested by a contemporary, the
great German mathematician Carl Friedrich Gauss. In his 1809 Theory of the Motion
of the Heavenly Bodies Moving about the Sun in Conic Sections, Gauss staked his claim,
writing, "Our principle, which we have made use ofsince 1795, has lately been published
by Legendre." Legendre was not amused, and the two continued to snipe at one another
over the matter throughout the early nineteenth century.

Neither Gauss nor Legendre referred to the method of drawing a line of best fit by
minimizing the sum of squared errors as a regression. That term was coined by the late
eighteenth-century scholar, Francis Galton. Galton, a cousin of Charles Darwins who
was also married to Darwins niece, was a polymath (he dabbled and excelled in a lot
of different areas). He also came up with the idea for the modern fingerprinting sys-
tem and was the first person to quantitatively document the wisdom-of-the-crowds
phenomenon.1 More disturbingly, Galton was a eugenicist—a proponent of selective
human breeding. To be clear, we do not support or approve of eugenics, but regression
turns out to be useful for non-eugenicists as well.

Galtons interest in eugenics led him to want to study evolution and heredity quanti-
tatively. He started by measuring the easy things like height. In one analysis, he collected
data on the heights of parents and their children. After plotting the data, he assessed
the average relationship between these two variables using what we now call a regres-
sion line.

Galtons analysis was actually a little complicated. He compared the height ofchildren
to the average height oftheir parents after first adjusting the heights so that women's and
mens heights were measured on the same scale. We don t want to go through all that. So,
to get the idea, imagine an analysis like Galtons that studies just the heights of fathers
and sons. The unit of analysis is a father-son pair, and the regression equation looks
like this:

Predicted Sons Height = a + ft • Father s Height

When Galton measured a and ft using OLS, what do you think he found? We might
have expected a0LS = 0 and /30LS = 1. That would mean, on average, sons tend to be
the same height as their fathers—that is, wed expect the son of a five-foot-tall father to
also be five feet tall, the son of a six-foot-tall father to also be six feet tall, and so on.
Instead, Galton was surprised to find a0LS > 0 and /30LS < 1. Stop for a moment and
think about why that might be.

Figure 5.12 demonstrates Galtons result graphically. The dashed black line shows
the 45-degree line—that is, the line with a = 0 and /} = 1. The thick gray line shows the
best fitting regression line, with a0LS = 38.2 and fi0LS = 0.448.

Let s start by interpreting these regression coefficients. The regression line lies above
the 45-degree line for relatively short fathers and below for relatively tall fathers. This
means that tall fathers tend to have sons that are taller than average but nonetheless
shorter than they are. Similarly, short fathers tend to have sons that are shorter than
average but nonetheless taller than themselves. Galton called this phenomenon "regres-
sion to mediocrity." Today, we typically call this phenomenon regression to the mean
or reversion to the mean, and we 11 devote the entirety of chapter 8 to understanding

lrThe idea is that ifyou ask enough people, even if they are non-experts, perhaps their errors will cancel out and
you'll get a good answer. Galton showed that although most individuals are bad at guessing the weight of an ox, if
you ask hundreds of people and average their answers, you'll get very close to the correct weight. Unfortunately,
this doesn't always work.
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Figure 5.12. A regression line through sons height and fathers height.

it. Since then, we ve used the word regression to refer both to Galtons statistical tech-
nique and to the phenomenon that he discovered using it. So its no coincidence that
OLS regression and regression to the mean use the same word. They have a common
intellectual history.

Wrapping Up
Regression is the most important tool we have for studying correlations. The slope

of the line of best fit tells us the sign and magnitude of the relationship between two
variables—as one goes up, how much does the other tend to go up or down? We can
learn a lot from regressions, but we have to be vigilant about keeping our thinking
clear. When using a technique that your computer can implement for you, it is easy
to become complacent. You can guard against some of the pitfalls by plotting your
data, considering the possibility of non-linear relationships, and being careful about
overfitting.

A regression tells us the relationship between variables in our data. If we are just
trying to describe the data, that is informative all on its own. But often we are trying to
do more. For instance, we might be trying to infer the relationship between variables in
some larger population from the relationship between those variables in our data, which
may only be a small sample of the population. How do we know whether a relationship
we found in our data is likely to hold in some larger population? Those concerns are
the topic of chapter 6.

Key Terms
Dependent variable: The variable associated with the outcome we are trying
to describe, predict, or explain.



92 Chapter 5

• Independent or Explanatory variable: A variable we are using to try to
describe, predict, or explain the dependent variable.

• Regression equation: An equation linearly relating a dependent variable to
some independent variables.

• Regression parameters: The parameters (intercept and slopes) that relate a
dependent variable to some independent variables in a regression equation.

• Error: The difference between the value of the outcome variable for an indi-
vidual data point and the predicted value for that same data point. This is
sometimes also referred to as the residual.

• Sum of squared errors (SSE): For a given line, calculate the error for each data
point by finding its vertical distance from the line. The sum of squared errors
for that line is found by squaring each of the individual errors and adding them
together.

• Ordinary least squares (OLS) regression: The method for finding the line of
best fit through data that minimizes the sum of squared errors.

• Regression line: The line of best fit through the data that one gets from OLS
regression.

• Intercept: In the context of a regression, the intercept tells us the predicted
value of the outcome when the values of all the explanatory variables are set
to 0. This is also referred to as the constant term. Sometimes the intercept has
a substantive interpretation, but sometimes it doesn't because it doesn't make
sense to think about situations where all the explanatory variables are zero (for
example, predicted voter turnout for people with an age ofzero). In any case, we
always include the intercept when we run a regression (except in very unusual
circumstances where we know from theory that the intercept should be zero).

• Conditional mean function: A function that tells you the mean (average) of
some variable conditional on the value of some other variables.

• Out-of-sample prediction: Using regression (or another statistical technique)
to predict the outcome for observations that were not included in the original
data you used to generate your predictions.

• Overfitting: Attempting to predict a dependent variable with too many inde-
pendent variables, so that variables appear to predict the dependent variable in
the data but have no actual relationship with it in the world.

Exercises

Download SchoolingEarnings.csv and the associated README.txt, which describes
the variables in this data set, at press.princeton.edu/thinking-clearly. This data set gives
the average annual earnings for 41- to 50-year-old men in the United States in 1980 at
each level of schooling. One observation gives the average earnings (in thousands of
dollars) for men with eight years of schooling, another gives the average for those with
nine years of schooling, and so on.
5.1 Run a regression with earnings as the dependent variable and schooling as the

sole independent variable. Interpret the coefficients.

5.2 Suppose you wanted a parsimonious way to predict earnings using only years
of schooling. What would you do?

5.3 Lets dig more deeply into whether the relationship between earnings and
schooling is approximately linear.
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(a) Start by making a scatter plot. Then plot the predicted values from your
regression along with the raw data points, as we did in chapter 2. Does
the regression line look like its fitting the data well?

(b) Now run a fourth-order polynomial regression (i.e., include school-
ing, schooling2, schooling3, and schooling4. Do those predictions
meaningfully differ from the predictions coming from the linear
regression?

(c) Now run different regressions for some different ranges of schooling.
Do those lines look meaningfully different from the predictions you get
from a single regression including all the data?

(d) Does all this make you think the simple linear approach was reasonable
or unreasonable?

5.4 Similar to what we did with age and voter turnout, conduct some out-of-
sample tests to evaluate your prediction strategy. Using only data for those
with twelve years of schooling or less, see how well your different strategies
from question 3 perform when predicting earnings for those with more than
twelve years of schooling.

Readings and References
For more information on the early history of regression, see

Stephen M. Stigler. 1986. The History of Statistics: The Measurement of Uncertainty
before 1900. Belknap, Harvard.



CHAPTER 6

Samples, Uncertainty, and Statistical Inference

What You'll Learn

• All quantitative estimates are the sum of three terms: the true quantity of
interest, bias, and noise.

• Statistical hypothesis testing allows analysts to assess whether an estimate was
likely to have arisen from noise.

• Statistical significance and substantive significance are not the same and should
not be conflated.

Introduction

Chapters 4 and 5 articulated tools that allow us to describe a relationship between
variables within a data set. We need variation in both variables and then we can describe

the correlation between those variables using regression. But often we want to go fur-
ther. We want to use the relationships between variables that we find in the data we have
(our sample) to make inferences about relationships that hold between those variables
in the larger world (the population of interest). For instance, once we ve found that
crime is higher on warm days in 2018, we'd like to know whether we are justified in
concluding that this relationship is likely to hold in other years and isn't simply an arti-
fact of the 2018 data. That is, we want to know whether an observed relationship in a
sample of days reflects a genuine phenomenon in the population of days or whether
it happens to be true in the sample of data that we looked at by chance (or dumb
luck). In this chapter, we discuss some tools that help us to adjudicate between these
possibilities.

Estimation

To start thinking about this question, we need a common language to talk about
the differences between the things we observe in our sample and the phenomena in
the population that wed like to learn about. To do so, we are going to use the following
simple equation, which will come up so often throughout the rest of the book that, from
now on, we are going to start calling it ourfavorite equation:

Estimate = Estimand + Bias + Noise
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We are going to explain each of these terms carefully as we go. But let s start with
some basic definitions.

The estimate is the number we get as a result ofour analysis. The estimand is the true
quantity of interest in the population that we are trying to learn about. Our hope is that
our estimate closely approximates our estimand. An estimate can differ from the esti-
mand for two reasons: bias and noise. Bias refers to errors that occur for systematic
reasons, and noise refers to idiosyncratic errors that occur because of chance.

Let s set the stage with a simple example that will allow us to define and understand
these terms more clearly.

Suppose we conduct a poll to learn which of two candidates (a Republican and a
Democrat) is going to win an upcoming election. We can think of this as a prediction
problem: we are collecting data to forecast the future winner. But we can also think of
this as pure description: we want to know the proportion of voters who support one
candidate over the other.

In either case, a key challenge is that there are too manyvoters for us to ask all ofthem
their opinions. Necessity forces us to poll a sample, constituting only a small proportion
ofthe totalpopulation ofvoters. Thus, we need to figure out what we can conclude about
political views in this larger population from evidence generated by a poll of only a
relatively small sample.

In our example, we are interested in learning the proportion of voters in the pop-
ulation who support the Republican. Lets call that proportion, which is a number
between 0 and 1, q. Since there are only two candidates, the proportion who support
the Democrat is just 1 — q. So q is our estimand. Until we actually hold the election, we
don t get to observe q; we have to try to estimate it.

Suppose we poll a random sample of 100 voters and ask them whether they will
support the Republican or the Democrat. We could estimate the number of voters in
the population who support the Republican (which we cant observe) by calculating
the proportion of people in our sample who support the Republican (which we can
observe). Lets call our estimate from our sample q, which we pronounce "q-hat." Fol-
lowing standard practice, we will notate estimands with a letter (it need not be q) and
we will notate estimates of that estimand using that same letter with a hat over it. In this
case, our hope is that our estimate, q, is close to the estimand, q.

In this example, the estimand is the true proportion of Republicans in the popula-
tion (q)—it is the unobserved quantity that we are trying to learn about with our data
analysis. The process of sampling 100 voters and calculating the proportion who sup-
port the Republican is called the estimator—it is the procedure we apply to generate a
numerical result. The proportion of Republicans in our sample (q) is our estimate—it
is the numerical result arising from the application of our estimator, which we hope
approximates the estimand.

By understanding the distinction between estimates and estimands, we can take a
first step toward making sense of our favorite equation:

Estimate = Estimand + Bias + Noise

The quantity we are interested in is the estimand. The quantity we observe in the
data is the estimate. In an ideal world, the estimate would equal the estimand, so that
our estimator would reveal to us the true quantity of interest. But our favorite equation
says this isn't the case. Estimates differ from estimands because of bias and noise. To
understand why, we need to learn more about those two troublesome quantities.
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Why Do Estimates Differ from Estimands?
Bias and noise are both important to understand. But they differ, and their difference

is often lost on people, leading to unclear thinking. So we'll take them in turn. But before
discussing bias and noise in detail, an analogy might help.

Anthony likes to play the Scottish game of curling. In curling, two teams take turns
sliding heavy granite stones down a long sheet of ice. As a stone slides, other team mem-
bers sweep in front of the stone like crazy while running along the ice. We recommend
watching a video; its pretty fun. Anyway, the team with the stone closest to the center
of a target on the far end of the sheet of ice (called the button) scores points.

Anthonys quite good at curling. He can more or less get his stones to go where he
wants. But, despite his skill, sometimes his stones miss the button (you're not always
trying to "draw to the button" in curling, but for the purposes of this discussion, well
assume that this is your goal). Why is this? Well, there are all sorts of factors outside the
control of the thrower that affect how a stone slides. Maybe there was some debris on
the sheet, causing a well-aimed stone to divert off course. Or maybe Ethan slipped on
the ice while trying to sweep and that accidentally "burned the stone." Anyway, for all
of these reasons, Anthonys well-aimed stones might miss the button.

Ethan, by contrast, is terrible at curling. So when he goes curling with Anthony, his
stones frequently miss the target, typically to the left (let s not even talk about distance).
He'd like to claim it is because of idiosyncratic factors, like with Anthonys misses. But if
that were true, he wouldn't be more likely to miss left than right. No, the truth is, Ethans
technique is poor, so his stones are systematically improperly aimed.

There is, we think, a useful analogy between curling and data analysis. Think of the
button as the estimand: it is the truth you are aiming at. Think ofyour estimator as the
act of sliding a stone down the ice. And think of the outcome of one stone throw as an
estimate arising from one iteration of the estimator.

Your stone (estimate) might miss the button (estimand) for two reasons. First, like
Anthony, you may have aimed well, but random factors may have moved the stone this
way or that. These random factors are like noise. Since these factors are random, on
average, they don t make Anthony miss more to the left or to the right. Indeed, on aver-
age, his stones location is on the button. But that doesn't mean every individual stone
finishes on the button; his misses just average each other out. This is what noise does—
estimates can equal the estimand on average, but because of noise, any given estimate
may not equal the estimand.

Second, like Ethan, you may systematically aim too far to the left. There is still noise,
so you might sometimes miss to the right. But, on average, your stone finishes to the
left of the button. These systematic errors are like bias. Unlike Anthony, Ethan's average
stone misses the button. This is what bias does—when there is bias, even the average
estimate doesn't equal the estimand, let alone any given estimate.

Okay, now that we have an analogy to help us see the difference between bias and
noise, let's talk about them in a bit more detail.

Bias

One reason an estimator might give you an estimate that differs from the estimand
is because it is biased. Imagine applying your estimator over and over again an infinite
number of times, each time to a new, independent sample ofdata. Doing so would gen-
erate an infinite number of estimates. Because of noise, some of those estimates will be
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bigger than the estimand (i.e., you'll get a larger share of Republicans in some of your
samples than there are in the population) and some of those estimates will be smaller
than the estimand (i.e., you'll get a smaller share ofRepublicans in some ofyour samples
than there are in the population). But you would like the average of that infinite num-
ber of estimates to be equal to the estimand. That is, you don't want to predictably (or
systematically) over-estimate or under-estimate the number of Republicans. You want
to be aimed at the truth. We say that an estimator is unbiased if the average value of the
estimates it generates would equal the estimand if we repeatedly applied the estimator
to new, independent samples an infinite number of times.

We also sometimes talk about the average value ofa variable over an infinite number
of draws in terms of expectations. So, we might say that an unbiased estimator equals
the estimand, in expectation. Or we might say that the expected value of an unbiased
estimator is the estimand.

There are lots of reasons a political poll might be biased. Suppose voters system-
atically lie to pollsters. Perhaps voters believe that pollsters are themselves likely to be
Democrats and the voters want to please the pollsters, so some Republican voters report
supporting the Democrat. Then our estimator will be biased in favor ofDemocrats—on
average, reporting more voter support for Democrats than there really is. Or suppose
Democrats are more likely to turn out to vote than Republicans, but equally likely to
answer polls. Then poll respondents will differ from voters, and the estimates from
polls will be biased in favor of Republicans—on average, reporting more voter sup-
port for Republicans than there actually is. Finally, what if pollsters contact people by
phone and phone owners are systematically different in their political leanings than the
population as a whole? This will also lead to bias. For lots of reasons, ifwe ran the poll
an infinite number of times and averaged the estimates, that average might not equal
the true proportion of Republicans in the population ofvoters, which is our estimand.
Thus, the poll could be biased for any of these reasons.

In subsequent chapters, we will be very concerned with thinking about sources of
bias. For the remainder of this chapter, however, we are going to ignore these potential
sources of bias to focus on the second potential problem with estimators, noise.

Noise

When you take a sample of the population, you inevitably introduce some noise
into your estimate. When you ask 100 randomly selected people out of 100 million
their opinions on political candidates, sometimes by chance you happen to talk to a
disproportionate share of Republicans and sometimes you happen to talk to a dispro-
portionate share of Democrats. As a result, even without bias, any individual estimate
need not equal the estimand. Suppose your estimand is unbiased. If you applied it an
infinite number of times, you would not over-estimate Republican or Democrat sup-
port, on average. But each individual estimate would likely differ somewhat from the
estimand because of noise—that is, natural variability that results from sampling. This
natural variability is sometimes referred to as sampling variation, a common source
of noise.

We have ways ofquantifying the amount ofnoise associated with an estimator. Think
about repeatedly applying an estimator with new, independent samples of data an infi-
nite number of times. The closer the various estimates would be to each other, the more
precise is the estimator. Thus, a more precise estimator is one with less noise.
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Figure 6.1. Understanding the difference between unbiased and precise.

What Makes for a Good Estimator?

In the end, we are trying to learn the true value of the estimand. Since our estimate
can differ from the estimand because ofbias or noise, what we really want is an estimator
that is both unbiased and precise.

Ifour estimator is unbiased but imprecise, our estimates will typically differ from the
estimand because there is so much noise. For instance, in our polling example, ifwe talk
to just one voter at random, their opinion is an unbiased estimate ofthe average opinion
in the electorate (ifyou did this an infinite number of times, q of those times you'd get a
Republican, and 1 — q of those times you'd get a Democrat). But the sampling variation
associated with estimating voter opinion by asking just one persons opinion is huge—
we will always estimate either 100 percent Republicans or 100 percent Democrats.

Ifour estimator is biased but precise, our estimates will typically differ from the esti-
mand because they are very precisely estimating the wrong quantity. For instance, if
we sample ten thousand voters, but only do so in Republican neighborhoods, we will
get answers clustered very tightly around each other, but they will systematically
over-estimate the number of Republicans.

Figure 6.1 illustrates that estimators can be unbiased, precise, neither, or both. The
black diamonds represent the estimand—the true value in the world we are interested
in. The gray dots show various estimates that arise from repeated applications ofa given
estimator, each time with an independent sample ofdata. If the gray dots are symmetri-
cally distributed around the diamond (like Anthonys curling stones around the button),
the estimator is unbiased. That is, the estimates it provides are right on average. If the
gray dots are clustered tightly together, the estimator is precise. That is, there is very lit-
tle noise, so the estimator yields similar estimates with each iteration. All else equal, we
would obviously like to have our estimator be less biased and more precise. However,
sometimes there are trade-offs between these goals, and we have to decide how much
bias we're willing to accept for a certain gain in precision.

For a concrete example of the possible trade-offs between bias and precision, let's
return to the topic of polling. Suppose you have $2,000 and you'd like to conduct a
reliable poll to understand how popular a political candidate, policy proposal, prod-
uct, or potential advertising campaign would be. You could post the survey online, pay
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people twenty cents per response, and obtain ten thousand responses. Or you could pay
a professional polling firm to obtain a random, representative sample at a cost of $20
per response, meaning you'll be able to afford only one hundred responses.

The online convenience sample is much larger, so your estimates of public opinion
will be more precise, but they'll also likely be biased. The kinds of people who volun-
tarily take surveys for modest compensation are not likely to be representative of the
general population. The professionally conducted survey will likely give you less biased
estimates, but the sample size will be smaller, so your estimates will be less precise.

This kind of trade-offbetween bias and precision is quite common for data analysts,
and we'll see more examples in part 3. The right way to make this trade-offwill depend
on your goals, the costs of different kinds of errors, and the particular question you are
hoping to answer.

If an estimator is unbiased, we'd also like it to be as precise as possible. And as we've
discussed, we might even allow for a little bias in exchange for a big gain in precision.
But if an estimator is really biased, it's no longer obvious that precision is a good thing.
For one thing, a precise biased estimator will never be anywhere close to the truth.
Whereas with less precision, you might sometimes make good predictions despite the
bias, albeit by accident. (Ethan would probably be better off if there was an earthquake
just as he released his curling stone because at least sometimes his stone would stay
in play.) Furthermore, precision might give you a false sense of confidence. Beware a
precise estimate with an unknown bias.

Quantifying Precision
Remember the motivating question for this chapter: When we estimate something

from a sample of data, how confident should we be in drawing inferences about the
larger population? As we've seen, if our estimator is biased, we should certainly be wor-
ried. But even if our estimator isn't biased, we still have to be worried that our estimates
do not reflect the true relationship in the larger population (the estimand) because of
noise. In order to know how worried we should be about this possibility, we need to
quantify the precision of an estimator. We do so through a statistic called the standard
error, which we can then use to construct confidence intervals.

Standard Errors

In chapter 2, we talked about the standard deviation as one way to measure how
spread out a variable's distribution is (or, equivalently, how variable the variable is).
Well, imagine that we repeated our estimator an infinite number of times, each time
with a newly drawn sample of data. In that thought experiment, we could think of the
estimate itself as a variable. Each time we draw the data and run our estimator, we get a
different value of the estimate because of the noise. So, we can imagine the distribution
of estimates we would get after repeating our estimator an infinite number of times.
That imagined distribution is called the sampling distribution. The standard deviation
of that sampling distribution is called the standard error. The standard error, ifwe knew
what it was, would give us a sense of how far any given estimate will be from the aver-
age estimate, since it measures how variable our estimates will be. If the estimator is
unbiased, the average estimate equals the estimand. So, for an unbiased estimator, the
standard error tells us approximately how far a typical estimate is from the estimand,
which is the true value we are trying to learn about.
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If the standard error is large, then the estimates would be very spread out and the
estimator is relatively imprecise (i.e., there is a lot of sampling variation). If the stan-
dard error is small, then the estimates would be very close together and the estimator
is relatively precise (i.e., there is little sampling variation). Look back at figure 6.1. The
third row shows an example of some estimates from repeated runs of an estimator with
a relatively large standard error—as a consequence, the estimates we see are quite spread
out. (Of course, we arent seeing the full sampling distribution since we don't have infi-
nite estimates.) The fourth row shows an example ofsome estimates from repeated runs
of an estimator with a relatively small standard error—as a consequence, the estimates
we see are tightly clustered.

We can provide some insight into what makes an estimator precise or imprecise
(i.e., when the standard error will be small or large). In our polling example, the stan-
dard error is approximately equal to J ^ > where N refers to the sample size (the
number ofpeople polled). While we aren't going to show you how to derive this formula
(a topic for a different book), we can learn some things about what makes an estimator
more or less precise by thinking about the formula.

Lets start with understanding the numerator, q{\ — q). Notice this term is maxi-
mized at q = \ and decreases as q gets larger or smaller. So, suppose the true proportion
of Republicans in the population, q, is either very large (close to 1) or very small (close
to 0). This makes q(\ — q) very small and, therefore, makes the standard error small.
Why? When q is very large or very small, there is little possibility of sampling error. If
99 percent of voters are Republicans, when you collect your sample of, say, one thou-
sand voters, it will be very unlikely that you find many Democrats. By contrast, if q is
close to one-half, the standard error is large. This reflects the fact that there is lots of
room for sampling error. You could easily find a 55-45 or 45-55 split in your sample
of data drawn from a 50-50 population. The closer q is to one-half, the more natural
variation there is in our outcome of interest, making the standard error larger.

Now consider the denominator. It tells us that as the size ofour sample increases, our
standard error goes down. This makes sense. The problem of imprecision comes from
the fact that our sample might not accurately reflect the whole population. When the
sample is large, it will more closely approximate the population. We can more precisely
estimate the opinions of a million people by talking to ten thousand people than by
talking to ten people.

The formula for the standard error actually tells us something a little more subtle
than just that small sample sizes lead to imprecision. It tells us that the standard error
shrinks in proportion to */N. Suppose the true proportion of Republicans in the pop-
ulation is q = .5. Then, if we took a poll of 1000 voters, we'd have a standard error of
/Yqqq ^ .016. Suppose we conducted a much larger poll of 10,000 people. Then our
standard error is J {qq10 = .005. So increasing the sample size by a factor of 10 only
improves the precision of the poll by approximately threefold. If we further increased
the sample size to 100,000, we'd get another roughly threefold improvement in preci-
sion, (J iQQ^QQ = .0016). In other words, there are diminishing returns to bigger and
bigger sample sizes. The standard error of a survey with 10,000 respondents is already
tiny, and adding more respondents doesn't meaningfully improve precision.

One tricky thing you might have noticed is that we need to know q in order to cal-
culate the standard error. But we don t know q; that's why we're doing the poll to begin
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with. In practice, we approximate the standard error by substituting q, our estimate of
q, into the formula. Of course, this approximation would run into problems if you had
a really small Nora value of q that was really close to 0 or 1. Suppose you talked to
five people and found that none of them were Republicans. Thoughtlessly applying the
procedures above, you would wrongly conclude that nobody is a Republican and that
your standard error is 0. Of course that's wrong, and that's because with small samples
and with extreme values of q, your approximation using q is misleading.

We should also point out that although there is a nice formula for approximating the
standard error in our polling example, this wont always be the case. Fortunately, our
computers can often produce reasonably reliable approximations of standard errors,
even in more complicated circumstances.

Small Samples and Extreme Observations
It is worth pausing to note that the fact that small samples lead to imprecision

explains a common phenomenon that you may have noticed out there in the world.
If you look up data on the towns with the highest or lowest cancer rates or the highest
or lowest average income, you will find a list of towns with a pretty small number of
residents. Similarly, if you look up the schools with the highest or lowest average test
scores, you will find a list of schools with a small number of students. Why is this?

Think of the average cancer rate or income in a town as an estimate of the national
cancer rate or income, just like the average support for Republicans in a polling sample
is an estimate of the average support for Republicans in the whole population. When
the number of residents in a town is small, that is equivalent to having a small sample
size. That leads to less precision (more noise) in your estimate. That means it is more
likely your estimate will have an extreme value in either direction. Small towns tend to
dominate the list of places with extreme cancer rates or average incomes, not because
they are necessarily on average more or less cancer prone or more or less wealthy, but
because their cancer rates and average incomes are more variable than places with more
people to average over.

To see this in the extreme, imagine a town with just one resident. That town either
has a 100 percent cancer rate or a 0 percent cancer rate. But a town with one hundred
thousand residents is going to have a cancer rate somewhere in the middle, much closer
to the national average.

Figure 6.2, inspired by a similar graph in Howard Wainer's Picturing the Uncer-
tain World, illustrates the point. The figure plots data from California middle schools
in 2012. We observe students' average academic performance (the Academic Perfor-
mance Index, which is largely determined by standardized test scores) and the size of
the student body for each school. The hollow data points represent the very worst per-
forming schools (bottom 5 percent on academic performance), and the solid-black data
points represent the very best performing schools (top 5 percent on academic perfor-
mance). As you can see from the regression line, there is actually a positive correlation
in this data between school size and academic performance—on average, larger schools
perform better than smaller schools. But, more importantly for us, small schools are
overrepresented in both groups.

Understanding that small sample sizes lead to imprecision is important for many
reasons. One is that, as Wainer points out, failing to think clearly about the issue can
lead to bad decision making. The Bill and Melinda Gates Foundation spent billions
of dollars on an ultimately ineffective small schools initiative. The evidence that led
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Figure 6.2. A scatter plot and regression line showing a slight positive correlation between average
academic performance and school size for California middle schools in 2012.

them to make this misguided investment was the observation that schools with a small
number ofpupils were over-represented on lists ofschools with the best test scores. Had
they thought a little more clearly, they would have also checked the lists of schools with
the worst test scores and found small schools over-represented on those lists too.

Confidence Intervals

Another way we often quantify precision is through a confidence interval.
An important mathematical fact, called the Law of Large Numbers, tells us that as

our sample size gets really big, the noise will essentially disappear. But how big is big
enough?

Another important mathematical fact, called the Central Limit Theorem, tells us that
ifour poll is indeed unbiased, then ifwe were to repeatedly run our poll, approximately
95 percent of our estimates (q, Republicans in our sample) will end up being within
approximately 2 standard errors of our estimand (q, Republicans in the population).
Therefore, pollsters will often report what they call the margin oferror, which is simply
twice the standard error.

Researchers and pollsters also sometimes report what they call the 95% confidence
interval. This is the interval that ranges from the estimate (q) minus two times the
standard error up to the estimate plus two times the standard error.

The 95% confidence interval is a source of some confusion. Often, people will casu-
ally say that we're 95 percent confident that the true value lies within the 95% confidence
interval. But that's not quite right. The correct statement is a lot clunkier. Technically,
we can say that if there is no bias and if we repeated our estimator an infinite number
of times, the true estimand would be inside the 95% confidence interval 95 percent of
the time.
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To get a picture in our head of how confidence intervals work, let s go back to our
curling analogy. Suppose Anthony pushes an infinite number of stones down an infi-
nite number of ice sheets. Think of the spot on the ice where the exact center of his
stone comes to rest as the estimate. That estimate is extremely unlikely to be sitting
exactly on the button—your estimate is almost never exactly equal to the true value
of the estimand. But the stone is wider than that one spot. So we might ask how often
the button will be touching some part of the stone. That will depend on how wide the
stone is. (Of course, there is a regulation width in curling, but allow us a little poetic
license. We aren't Scottish. And this isn't the Olympics.) We could find the exact width
of a stone such that the button would be touching some part of the stone on 95 percent
of Anthonys throws. This is like the 95% confidence interval. It isn't that, on any one
throw, we're 95 percent confident that the button is covered by some part of the stone.
It is that, on 95 percent of throws, the button is covered by some part of the stone.

This analogy can also help us think about confidence intervals other than the 95%
confidence interval. Sometimes we want to be more confident than 95 percent. So we
might be interested in the 99% confidence interval. Askyourselfwhether the 99% confi-
dence interval is wider or narrower than the 95% confidence interval. IfAnthony wants
99 percent of his throws to end with some part of the stone touching the button, he is
going to need to use a wider stone. So the 99% confidence interval is wider than the
95% confidence interval. We have to admit a larger range of possible Republicans ifwe
want to be sure our estimate is within that range 99 percent of the time rather than just
95 percent of the time.

Statistical Inference and Hypothesis Testing
Now we can finally turn to this chapters motivating question: How do we make

inferences about populations using estimates from samples? Lets stick with our polling
example. As we emphasized, when we conduct a poll, even ifwe think it is unbiased, we
also want it to be precise because we want to know that it is giving us an estimate that's
close to the truth. How can we assess this? How well does a sample of, say, one thousand
voters estimate the views of the 140 million Americans that will determine who wins

an upcoming presidential election? Let's see.

Hypothesis Testing
Often, we want to assess some particular hypothesis. For instance, we might want to

know whether it is reasonable to believe that the estimand is greater than, less than,
or different from some particular reference point. For that, we need to think about
hypothesis testing.

In the example of an electoral poll, we might like to know which candidate is going
to win the election. Suppose we conducted an unbiased poll of one thousand voters
and this yielded an estimate of the Republican candidate's vote share of q = .532 or 53.2
percent. How confident should we be that the Republican is actually going to win the
election—that is, how confident should we be that more than 50 percent of voters will
vote for the Republican or, put differently, that q > .5? Hypothesis testing provides a way
for us to say something about that.

One way of thinking about this question is as follows. We have some evidence from
our poll that the Republican candidate is more popular than the Democrat. But we
want to know how good that evidence is. That is, we want to know how likely it is that
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we could have observed such evidence even if the Republican is not more popular than
the Democrat. So we test how likely it is that we would have observed the evidence
we observe if the two candidates were actually equally popular. This no relationship
benchmark is typically referred to as the null hypothesis.

To understand the hypothesis test, start by assuming the null hypothesis is true—that
is, the two candidates are exactly equally popular, so q = .5. Now ask how likely would
it be for us to obtain a poll result at least as favorable for the Republican as the one we
actually found, q = .532.

We already have the information we need to answer this question. With a true vote
share of q = .5 and a poll of one thousand voters, the standard error of our estimator is
approximately 1.6 percentage points (J f^§ ^ .016). Our estimate of .532 is 2 standard
errors above the null hypothesis (.5 + 2 • .016 = .532). (We didnt choose these numbers
by accident.)

As we said earlier, the Central Limit Theorem tells us that 95 percent of estimates
from an unbiased poll of the sort we ran will fall within 2 standard errors of the truth,
meaning that only 5 percent of estimates will fall more than 2 standard errors from the
truth. Moreover, in halfofthose unfortunate cases, the estimate will be 2 standard errors
below the truth (showing the Democrat to be notably ahead). So if the null is true, the
probability that we'd get a poll result as favorable for the Republican as the one we got
is about 2.5 percent, or 1 in 40.

We obviously picked numbers that would make this calculation straightforward, but
your computer can do this calculation for any poll result. Statisticians are in the busi-
ness of developing methods for conducting these calculations. In statistics lingo, the
analysis we just did is called a one-sided z-test. You dont need to know about z-tests
to understand the rest of this book, but if you want to learn about them, you can con-
sult virtually any statistics book. (Wikipedia is pretty reliable for such material as well.)
More generally, the important thing is that hypothesis testing is a strategy for assessing
the probability ofgetting a result as extreme as yours under the assumption that the null
hypothesis is true.

Statistical Significance
We just saw that if the null is true, the probability we would have gotten a result as

favorable to the Republican as what we found is only .025. This probability is called a
p-value. If our p-value is really low, then we might conclude that the null is unlikely
to be true. Thus, we have some statistically compelling evidence that the Republican is
indeed favored by voters—if the true vote share were evenly split, its quite unlikely that
the poll result would be this favorable to the Republican (and even more unlikely if the
true vote share favored the Democrat).

A common strategy is to pre-specify a particular threshold (most commonly, .05),
and if the p-value is below that threshold, then we say we reject the null hypothesis and
conclude that we have statistically significant evidence for the hypothesis we were testing
against the null hypothesis.

Ofcourse, hypothesis testing does notprovide certain conclusions. With a significance
threshold of .05, there's a 5 percent chance of obtaining a statistically significant result
even if the null hypothesis is true. But hypothesis testing provides one way of thinking
quantitatively about whether a pattern or result you have detected in your data set is
likely to reflect a genuine phenomenon rather than simply being the product of noise.



Statistical Inference 105

One common error is to assume that the p-value tells you the probability that the null
hypothesis is true. It doesn't. It tells you the probability ofgetting an estimate as extreme
as the one you got if the null is true. Those two numbers are typically different. Indeed,
to calculate the former quantity, you'd have to have a lot more information (e.g., how
likely you thought it was that the null was true before you saw the evidence). We'll
discuss these issues in part 4.

Statistical Inference about Relationships
So far, we've developed our ideas about bias, noise, and hypothesis testing in a sim-

ple setting where we are just trying to learn about the share of voters who support
the Republican candidate. But all these concepts and tools of statistical inference can
be applied to much more interesting problems, including estimating relationships like
correlations.

Suppose we ran a regression to estimate the relationship between some outcome vari-
able and some explanatory variable. The previous chapter discussed how we can utilize
linear regression to find coefficients that describe the relationship between two vari-
ables in a data set. But now let's think about this in terms of estimation and statistical
inference.

Suppose our data set consists of information on the income and education of a ran-
dom sample of one thousand workers, but we are actually interested in the average
relationship between income and education in the population of all workers. So we are
trying to make inferences about a correlation in the population (our estimand) based
on a correlation in the data (our estimate). How do we do this?

Start with the following equation, which describes the relationship between income
and education in the population.

Income/ = a0LS + fi0LS • Education/ + error/

This equation is just like the one that we studied in chapter 5. Income/ is person f's
income, Education/ is person f's years of education, and error/ is the difference between
person f's income and the income predicted by the OLS regression line for a person with
person f's education. The parameters a0LS and /30LS take whatever values minimize the
sum of squared errors across the population. For example, /30LS is the average extent
to which income increases with each additional year of education in the population.
These parameters a0LS and /30LS are features of the world. We don't know them. But,
since we would like to know, on average, how income changes with education, f}0LS is
our estimand.

We don't know /30LS because we don't observe the income and education of every
single person in the population. But we can estimate it by applying linear regression to
our data on one thousand workers. Following our convention of labeling estimates with
hats, let's call the estimate from that regression J30LS. It is the regression coefficient, and
it reflects the correlation between education and income in our sample. (Often, people
drop the OLS superscript and just talk about their estimate as /*, which is fine as long
as it is clear what you are up to.)

Unfortunately, /30LS and J30LS are not the same thing. The former is an estimand and
the latter is an estimate, which, as we know from our favorite equation, may differ from
the estimand because of both bias and noise. Let's assume that our sample of workers
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was randomly selected from the population, so there is no bias. (We'll talk more about
random sampling and unbiasedness in chapter 11). But there is still noise. So ifwe want
to know how close J30LS is likely to be to the true /30LSy we're going to need to think
about the standard error.

Just as q, our estimate of the proportion of Republicans in the population, had a
standard error, so too does our estimate of the relationship between income and edu-
cation, J30LS. The standard error gives us a sense of how far, on average, our estimate
would be from the truth ifwe repeated our estimator an infinite number of times with
independent samples of data. Just as with the poll result, there are formulas for calcu-
lating this standard error. For now, you don t need to worry about the formula because
a computer will calculate the standard error for you. Thinking more technically about
standard errors is a topic for a different book.

Once youVe estimated the standard error associated with a regression coefficient,
you can do the same kinds of things that you did with the standard error of the poll
result. For instance, you can construct a 95% confidence interval. You can also conduct
hypothesis tests and compute p-values. All of this can help you assess how precise your
estimate of the true relationship is.

One common question people are interested in is whether there is compelling evi-
dence that there is any true relationship at all. That is, suppose you find a positive J30LS;
income and education are positively correlated in your sample. Should you be confident,
on the basis ofthat evidence, that they are positively correlated in the larger population?

You can start to answer that question by testing the null hypothesis that the true
relationship between income and education is in fact zero. To do so, you ask how likely it
is that you would have gotten an estimate as big as J30LS ifthere was in fact no correlation
between income and education in the population (i.e., /30LS = 0). If you obtain a small
p-value and reject the null hypothesis, then you have statistically significant evidence
that there is a relationship between income and education in the population.

One reason statistical inference of this sort is so useful is that we're bound, from
time to time, to find relationships in our data that do not reflect genuine relationships
in the larger population. This is the nature of noisy data. So we need to check whether
we have good reason to believe our findings aren't just the result of noise.

What If We Have Data for the Whole Population?
Sometimes we have data for an entire population of interest. For instance, suppose

we want to know the correlation between participation in varsity athletics and GPA for
University of Chicago students. It's conceivable that we could convince the university
to give us the relevant data for every single student, in which case we wouldn't need
to estimate the correlation in the population by calculating it in a sample. We could
perfectly measure the true estimand, the correlation between athletics and GPA for the
whole population of University of Chicago students.

Here's a tricky question. Does it still make sense to think about standard errors,
confidence intervals, and statistical significance when we have data for the entire pop-
ulation? One argument is that these tools are irrelevant because there was no sampling.
So there is no noise. The estimate is the estimand. As such, there's no need to think
about statistical inference.

But we still think there are good reasons to pay attention to the concept ofnoise and
the associated measures of uncertainty even if we have data for an entire population.
Let's talk about why.
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Suppose we found a small positive correlation between playing a varsity sport and
GPA. It still seems reasonable to ask whether that difference arose for a reason or
whether it arose just by coincidence.

What would it mean for a correlation to arise by coincidence? Suppose that there's
no good reason to think there should be an on-average difference between the GPAs of
athletes and non-athletes: the admissions standards are the same for both kinds of stu-
dents, athletic participation has no effect on GPA, academic performance has no effect
on athletic participation, and so on. Nonetheless, there are all kinds of idiosyncratic
differences between students that lead their GPAs to be different from one another.
And with any finite number of students, there's bound to be at least a slight difference
between the GPAs of athletes and non-athletes, even if there's no good reason for the
difference.

To assess whether this observed correlation arose by coincidence or for a reason,
we can t collect more data. We already have all the data there is to have on University
of Chicago students. However, it turns out that the tools of statistical inference and
hypothesis testing still provide a useful way to think about whether an observed pattern
was a coincidence or not.

One way to think about the problem is that, although we have data on all the actual
students at the university, these actual students are just a small sample of a much larger
hypothetical population of students that could have been at the university. We can start
with the null hypothesis that the true correlation in that larger, hypothetical population
is zero, and we can ask how likely it is that we would have observed a correlation at
least as large as the one we observed among the actual students by chance. Of course,
doing this requires a metaphysical leap from actual populations to hypothetical pop-
ulations. But engaging in a little bit of metaphysics is a price probably worth paying
to preserve our ability to think about whether some observed relationship reflects a
genuine, predictable pattern or was just a fluke.

Substantive versus Statistical Significance
Statistical hypothesis testing is often helpful and informative because we want to

know whether an observed phenomenon is likely to have arisen purely by chance
(e.g., due to sampling variation). However, statistical significance (a lowp-value indi-
cating that a result was unlikely to have arisen by chance) is not the same thing as
substantive significance, and we must be careful not to conflate these two concepts.
Often, we don t want to know just whether some phenomenon exists or not, which
is the question of statistical significance; we want to know how big or small the phe-
nomenon is because that will tell us whether it is important or not, which is the
question of substantive significance. For example, executives at Coca-Cola probably
already know that their marketing has some effect on sales. But that doesn't tell them
how much to spend on marketing. For that, they want to know how big the effects of
marketing on sales are. Let us give you examples that illustrate the two ways quantita-
tive analysts can be led astray by emphasizing statistical significance over substantive
significance.

Social Media and Voting
In 2012, six researchers published a study in Nature showing that people were more

likely to vote in the 2010 U.S. midterm elections iftheir Facebook pages displayed a ban-
ner indicating which of their friends voted. The study was notable for several reasons.
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Facebook allowed the researchers to randomize the experience of sixty-one million
voting-age Facebook users in the United States on Election Day. And indeed, the exper-
imental intervention appears to have increased turnout—the estimated effect of seeing
that a close friend voted is highly statistically significant (p = .02). The researchers
concluded that "strong ties are instrumental for spreading both online and real-world
behaviour in human social networks." And the study received significant press coverage
for demonstrating how important social pressure is for voting.

What most observers failed to notice was that the estimated effect of the Facebook

banners on voter turnout was less than 0.4 percentage points. This is a substantively
small effect, arguably of little relevance for campaigning or understanding elections.
The fact that 0.4 percent of eligible voters can be persuaded to vote through a Face-
book banner reporting their friends' voting choices does not tell us that strong ties are
instrumental for spreading behavior. Of course, with a sample size of sixty-one million,
almost any non-zero estimate will be statistically significant. That's not a bad thing. Big
sample sizes mean that our estimates are quite precise, so we will more reliably detect
genuine relationships. However, we can't just assume that any statistically significant
result is also substantively significant.

We've seen that statistically significant results can be substantively insignificant. Now
let's see that the opposite is also true.

The Second Reform Act

In a 2011 article in the Quarterly Journal ofPolitical Science, Samuel Berlinski and
Torun Dewan estimate the effects of the Second Reform Act of 1867 on elections in
the United Kingdom. Despite the fact that the Second Reform Act roughly doubled the
size of the eligible electorate and brought working-class voters to the polls for the first
time, the authors report that there was little effect on election outcomes: "There is no
evidence relating Liberal [one of the major British parties] electoral support to changes
in the franchise rules."

But is this the right way to interpret the evidence? When the authors say there is no
evidence, what they mean is that their estimates of the effect of the Reform Act are not
statistically significant. So they can't say that those results were unlikely to have arisen
by chance. But, while not statistically significant, the evidence from the study actually
suggests that the Second Reform Act had important consequences. The numerical esti-
mates indicate that the Reform Act's doubling of the electorate increased the Liberal
Party's vote share by 8 percentage points, a substantively large effect implying that the
new, working-class voters enfranchised by the reform were much more likely to sup-
port the Liberal Party than were wealthier, previously enfranchised voters. However,
although the estimate is substantively large, it is also imprecise and therefore not sta-
tistically significant. Focusing on this statistical insignificance, Berlinski and Dewan
conclude that the Second Reform Act had little effect. But the evidence actually indicates
that our best guess is it had a big effect. It's just that that guess is uncertain.

Although statistical significance is useful and informative, it is often misused and
misunderstood. A theme throughout this book is that clear thinking and data are com-
plements, not substitutes. Just because we're doing statistics doesn't mean we can stop
thinking substantively about the questions we really want to answer. We should utilize
statistical inference when possible. But we should also always remind ourselves to make
substantive inferences from the evidence.
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Wrapping Up
Estimates can differ from estimands for two reason: bias and noise. Bias will be a

major focus of chapter 9. In this chapter, we focused on noise—differences between
the estimate and the estimand that arise because of idiosyncratic features of our sam-
ple. Because noise is idiosyncratic, it would average out to zero if we were to follow
our estimation procedure over and over again an infinite number of times, each time
on an independent sample of data. But in any one sample, noise can be quite im-
portant.

The presence ofnoise means that we are always at least somewhat uncertain whether
a relationship in a sample of data (the estimate) in fact reflects a real relationship in the
larger population of interest (the estimand). We have discussed techniques for quan-
tifying this uncertainly and for testing the hypothesis that an estimated relationship is
real against the null hypothesis that the estimated relationship was the result of noise
alone.

The presence of noise creates challenges beyond uncertainty. For instance, in
chapter 7 we will consider the problem that, if the same study is run over and over
again, some iterations will yield statistically significant results because of noise, even
if the relationship under investigation isn't real. If only those statistically significant
findings get reported, then the scientific enterprise may lead to systematically incor-
rect conclusions. In chapter 8 we will examine how the presence of noise creates the
puzzling phenomenon of reversion to the mean—extreme observations tend to be fol-
lowed by less extreme observations—which, ifwe don t think clearly, can lead to all sorts
of misinterpretations of evidence.

Key Terms
• Population: The units in the world we are trying to learn about.
• Sample: A subset of the population for which we have data.
• Estimand: The unobserved quantity we are trying to learn about with our data

analysis.
• Estimator: The procedure we apply to data to generate a numerical result.
• Estimate: The numerical result arising from the application of our estimator

to a specific set of data.
• Bias: Differences between our estimand and our estimate that arise for system-

atic reasons—that is, for reasons that will persist on average over many different
samples of data.

• Noise: Differences between our estimand and our estimate that arise due to

idiosyncratic facts about our sample.
• Unbiasedness: An estimate/estimator is unbiased if by repeating our estima-

tion procedure over and over again an infinite number of times, the average
value of our estimates would equal the estimand.

• Expectation or Expected value: The average value of an infinite number of
draws of a variable is the variables expected value or its value in expectation.

• Precision: An estimate/estimator is precise ifby repeating our estimation pro-
cedure over and over again, the various estimates would be close to each other.
The more similar the hypothetical estimates from repeating the estimator, the
more precise the estimate.
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• Sampling distribution: The distribution of estimates that we would get if we
repeated our estimator an infinite number of times, each time with a new
sample of data.

• Standard error: The standard deviation of the sampling distribution. If the
estimator is unbiased, the standard error gives us a sense ofhow far, on average,
our estimate would be from the estimand ifwe repeated our procedure over and
over with independent samples of data.

• Margin of error: Pollsters often multiply the standard error by 2 and report
this as the margin of error.

• 95% confidence interval: If we applied the estimator an infinite number of
times, each time on a new sample of data, the estimand would be contained
in the 95% confidence interval (newly calculated each time) 95 percent of the
time. Importantly, it is not true that we are 95 percent confident that the true
estimand lies in the 95% confidence interval.

• Hypothesis testing: Statistical techniques for assessing how confident we
should be that some feature of the data reflects a real feature of the world rather

than arising from noise.
• Null hypothesis: The hypothesis that some feature of the data is entirely the

result of noise.

• Statistical significance: We say that we have statistically significant evidence
for some hypothesis when we can reject the null hypothesis at some pre-
specified level of confidence (typically, 95% confidence).

• p-value: The probability of finding a relationship as strong as or stronger than
the relationship found in the data if the null hypothesis is true. We usep-values
to assess statistical significance. For instance, if thep-value is less than .05, then
we have statistically significant evidence (at the 95% confidence level) that the
relationship is real. Importantly, thep-value is not equal to the probability that
the null hypothesis is true.

Exercises

6.1 Consider the following strategies for conducting a political poll to predict
the vote shares in an upcoming election. Discuss the likely extent of bias and
precision for each one.

(a) Fox News asks their viewers to call in and tell them who they are sup-
porting in the election. They get more than one hundred thousand
responses.

(b) Nailbiter Polling (a new firm on the scene) conducts polls, and then,
regardless of the answers, they always report that the race is a dead
heat: 50 percent in favor of candidate A, and 50 percent in favor of
candidate B.

(c) Surprising News Polls (another new player) conducts large, represen-
tative polls, computes the average support for each candidate, and then
flips a coin. If the coin is heads, they add 10 percent to candidate As
support, and if the coin is tails, they subtract 10 percent from candidate
As support.

(d) Middle America Polling obtains a physical copy of the voter file
(the list of registered voters), they flip to the middle page, and they
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contact and interview the ten individuals in the middle of that middle

page.

6.2 Anthonys father, Pete, recently purchased a roulette wheel to run an under-
ground casino in his garage. In case you're not familiar with roulette, the wheel
is spun and a ball is dropped seemingly randomly into one of thirty-eight
pockets on the wheel, each ofwhich corresponds to a number and a color. On
this wheel, there are eighteen red pockets, eighteen black pockets, and two
green pockets. A gambler might bet on red, in which case they will double
their money if the ball falls into a red pocket but lose their money otherwise.
If the wheel is indeed fair, meaning that the ball is equally likely to fall in any
pocket, Pete expects to make money on these bets because the gambler wins
18 out of 38 times, while Pete wins the other 20 out of 38 times. Of course, if
the wheel is not fair, Pete could have just made a terrible investment. To test
the wheel, Pete conducted three practice spins (with no gambling), and much
to his dismay, the ball fell into a red pocket all three times. Given the informa-
tion available to us thus far, what can we say from a statistical standpoint about
whether the table is likely to be biased toward the red pockets?
(a) What's the null hypothesis?
(b) What's the p-value?
(c) Provide a substantive interpretation for thep-value and, importantly,

explain what the p-value is not.
(d) Ignoring the legality of garage roulette, what additional advice would

you give to Pete to help him figure out if his table is fair?

6.3 Lets return to the analysis of schooling and earnings from last chapters exer-
cises. When you regress earnings on schooling, in addition to giving you
estimated coefficients, your computer also probably gave you some other
numbers that you didn't understand until you read this chapter. For the coeffi-
cient associated with years of schooling, you should have obtained an estimate
of 1.16, indicating that each additional year of schooling corresponds with
increased earnings of about $1,160. What are the estimated standard error,
p-value, and 95% confidence interval associated with that coefficient? Provide
a substantive interpretation for each one.
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CHAPTER 7

Over-Comparing, Under-Reporting

What You'll Learn

• If analysts make lots of comparisons but report only the statistically significant
ones, there will be lots of false positive results and over-estimates.

• These false positives can be the result of nefarious researcher behavior (p-
hacking). But they can also arise in a community of entirely honest researchers
(p-screening).

• There's no easy solution, but analysts and consumers have some tools at their
disposal to reduce the risk of being misled.

Introduction

Although statistical hypothesis testing is a useful tool, its far from foolproof. To
understand why scientific studies and quantitative data analyses so often produce mis-
leading or unreliable results, we're going to start in an unlikely place—the story of a
seemingly impressive sea creature.

Can an Octopus Be a Soccer Expert?
In 2008 and 2010, Paul the Octopus made headlines for his apparent prowess in pre-

dicting the outcome of soccer matches. Before matches between two national teams,
Pauls keepers would present him with two boxes of food, each marked with the flag
of one of the competitor countries. The keepers interpreted the box Paul ate from
first as his forecast for who would win the match. Paul was surprisingly accurate, and
journalists and gamblers eagerly awaited his predictions.

Paul was the subject ofmuch fascination and some scorn. According to Nick Collins
of The Telegraph, an Argentinian chef was so angry after Paul correctly forecast Ger-
many's defeat of Argentina that "he threatened to cook Paul in retribution." Gamblers
were betting on the accuracy of Paul's predictions before he had even made them.
Collins reported that "William Hill, the bookmaker, says it has taken so many bets on
whether Paul will call the final between Spain and Holland correctly that it had to cut
odds from evens to 10/11."

A skeptic might point out that, although octopuses are impressively intelligent,
there's no way that Paul could actually have had special insight into the outcome of
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Table 7.1. Ways to flip a coin 3 times.

Ways It Can Happen

Three Heads

HHH

Two Heads

HHT

HTH

THH

One Head

HTT

THT

TTH

Zero Heads

TTT

soccer matches. Even experts have a hard time calling games in a sport in which, as
far as we Americans can tell, basically no one ever scores. And Paul presumably knew
nothing about the teams playing or even about soccer in general. Was Pauls success
dumb luck?

As discussed in chapter 6, we have tools for assessing whether an observed pattern
is likely to be the result of dumb luck or, more scientifically, noise. We can conduct a
hypothesis test and calculate ap-value.

How does Paul fare in such a hypothesis test? Paul made 14 predictions over the
course of his career, and he was correct in 12 of those 14 games. That's pretty good.
Suppose the null hypothesis that this was dumb luck is true—that is, Paul was picking
in a completely random fashion, with each box equally likely to be selected. To figure
out whether it is plausible that Pauls record emerged from dumb luck alone, we want to
know how likely it is that Paul would have guessed correctly at least 12 times if he was
in fact just guessing at random.

This problem is simple enough that you can compute thep-value by hand. The basic
idea is this. Assume Paul is guessing at random. Calculate how likely it is that he'd get
exactly 12 correct, how likely it is that he'd get exactly 13 correct, and how likely it is
that he'd get exactly 14 correct. The sum of those three probabilities is the probability
Paul would have done at least as well as he did by dumb luck.

Before we go on with the Paul story, lets pause and learn how to calculate these
probabilities. Doing so will help make sure we are all thinking clearly about what dumb
luck really means.

It will help to start with a simplification of the problem. Our null hypothesis is that
Paul the Octopus is guessing at random—that is, Paul predicting the winner of a game
is analogous to a person flipping a coin and having it land on heads. So let's think about
flipping a coin. Suppose you flip a coin 3 times (we'll get to Paul's 14 in a bit). Table 7.1
shows all the things that could happen.

Equivalently, if Paul forecast three games, then zero, one, two, or three of his
predictions could be correct.

What is the probability that you get, say, exactly two heads? Well, there are eight
total things that could happen, and ifwe're flipping a fair coin, they're all equally likely.
Of those eight, three involve getting two heads. So the probability you get exactly two
heads when you flip three coins is |. Analogously, if Paul was forecasting three games
at random, the probability he would get exactly two correct is |.

But that isn't quite the quantity we want to know. We want to know the probability
you get at least two heads or that Paul correctly forecasts at least two games.

Well, in addition to getting two heads, you could also get three heads. There is one
way for this to happen, so the probability you get three heads is |. Hence, the prob-
ability you get at least two heads is | + | = \. Analogously, if Paul had called three
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games, and he was just guessing randomly, the probability he'd get at least two right is
one-half.

But Paul didn't just forecast three games. He forecast 14. Making a table for fourteen
coin flips would be pretty boring. So lets think about how to analyze this problem a
little more generally.

Suppose you flipped a coin n times. How likely is it that you get exactly k heads? Let s
start by calculating the probability that each of the first k coin flips lands on heads and
the remainder land on tails. The probability that the first k flips land heads is ^ . The
probability that the remainder land tails is \ .So the probability that the first k flips
land heads and the remaining n — k flips land tails is | x ^

Ofcourse, that's only one way to get exactly k heads. The k heads don t have to be the
first k flips. They can be any group of k out of the n flips. There are ^u^L^y different
ways to get exactly k heads when flipping a coin n times. So the overall probability of
getting exactly k heads out of n coin flips is

lk ln~k n\
- x - x

2 *!(«-*)!

The exclamation points above meanfactorial. We refer to the expression n\ as n fac-
torial and it's defined as the product of n and every positive whole number less than n.
So, for example, 3! = 3x2x1 = 6.

Let's see if this confirms our finding from before in our three-coin-flip example. If
we flip a coin three times, what is the probability we get exactly two heads? Since n = 3
and k = 2, we calculate the probability as follows:

l2 l3"2 3! _1 1 3x2xl_3
2 X2 X 2!(3 -2)!~4X2X2xlxl~8

And now we can calculate the probability that Paul the Octopus would correctly
predict 12 or more games out of 14, if he was picking at random. The probability he
gets exactly 12 right is

X12 ^4-12 14,
- x - x « .00555.
2 2 121(14-12)!

The probability he gets exactly 13 right is

1 13 114-13 14f
- x - x «.00085.
2 2 131(14-13)!

The probability he gets all 14 right is

X14 ^4-14 14f
- x - x «.00006.
2 2 14!(14-14)!

So the probability Paul calls twelve or more games correctly is approximately .00555 +
.00085 + .00006 «.0065, around 1 in 155. In other words, if Paul had no special insight
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into soccer, its highly unlikely that he would have been as accurate as he was. That's,
of course, precisely why everyone was obsessed with Paul. And it seems like perhaps
they were right to be. Using the standard statistical hypothesis testing approach that we
introduced in chapter 6, we can reject the null hypothesis that Paul is just guessing at
random and conclude that we have statistically significant evidence that Paul is indeed
an expert soccer forecaster.

The analysis above is pretty similar to what two mathematicians, Chris Budd and
David Spiegelharter, did when they were interviewed about Paul back in 2010. But if
we look at Pauls games a little more closely, we can see that this analysis may be overly
generous to Pauls psychic powers.

Paul lived in Germany, and he was primarily asked to predict the outcome of games
in which Germany was competing. In fact, 13 of the 14 games involved Germany. Fur-
thermore, Paul had a strong tendency to pick Germany. Maybe he liked that flag because
he'd been seeing it for years. Maybe the German box happened to be his favorite box
for reasons unbeknownst to us. Maybe Pauls handlers subconsciously trained Paul to
pick Germany. Who knows? It also turns out that Germany is good at soccer—they win
most of the time. So maybe Pauls success isn't so shocking. Lets redo the analysis above
with this information in mind.

Paul predicted the outcome in 13 games involving Germany and he picked Germany
to win 11 of those games. Germany in fact won 9 of them. Our null hypothesis is again
that Pauls predictions were dumb luck, in the sense of having no special insight into
soccer. But this time, instead ofimagining that he was equally likely to choose either box,
imagine he was predisposed to pick the German box. Lets assume his predisposition
meant that his probability of picking Germany was j| in any game Germany played,
since that's the frequency with which Paul in fact selected Germany. IfGermany won 9
of 13 games and Paul selected Germany with a probability of y| each time, how likely is
it that he would have been correct 11 or more times just by pure chance? This p-value
could be computed by hand, but it is complicated to do so. So instead we ran a simple
simulation on our computer to approximate it. With these tweaked assumptions, the
chances that Paul gets 11 or more games right out of 13 is about .03 or 1 in 33—still
unlikely, but much more likely than 1 in 155.

Now, what do we think? It still looks pretty unlikely that Pauls success is attributable
purely to dumb luck. Even if he was predisposed to predict the strong German team,
there was only a 3 percent chance that Paul would be as successful as he was. Therefore,
a traditional hypothesis test with a .05 threshold would still lead us to reject the null. We
continue to have statistically significant evidence that Paul is good at predicting soccer
matches.

You won t be surprised to learn that we're still skeptical. But why? Paul is not the only
octopus out there. What if there were actually ten octopuses scattered around Germany,
each trying to predict the outcomes of soccer matches? The world, of course, would
only ever hear about the most successful one. If this is right, then we still haven t tested
the right hypothesis to figure out how likely it is that Pauls accuracy was due to dumb
luck. If there really were ten octopuses trying to predict soccer matches, and ifPaul just
happened to be the one who did well and therefore became famous, instead of asking
how likely it is that Paul would be so accurate by luck, we have to ask how likely it is that
any one of the ten octopuses would be that accurate by luck. Because if it had turned
out that Paulina the Octopus was right 12 out of 14 times instead of Paul, then we'd be
talking about Paulina and we'd never have heard of Paul.
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Figuring out how likely it is that some octopus out of the ten would have been as
accurate as Paul is relatively straightforward. But to do the calculation, we need to
understand one more fact about p-values. Recall that the p-value is the probability of
observing an outcome at least as extreme as the one you observe if the null hypothe-
sis is true. So, if the null hypothesis is true, how often will you observe an outcome as
extreme as an outcome with ap-value of .05? Exactly 5 percent of the time. And if the
null hypothesis is true, how often will you observe an outcome as extreme as an out-
come with ap-value of .2? Exactly 20 percent of the time. And so on for each and every
p-value. This is just a restatement of the definition of thep-value.

But from this fact, we learn something important. When the null hypothesis is true,
we should observe ap-value less than or equal to .05 in 5 percent of cases, p-values less
than or equal to .2 in 20 percent of cases, p-values less than or equal to .5 in 50 percent
of cases, and so on. Hence, it must be that, when the null hypothesis is true, you are
equally likely to find each p-value. (The technical jargon for this is that p-values are
uniformly distributed under the null.)

So, what's the probability that at least one of our German octopuses would generate
a record of prediction with a p-value at least as good as Pauls record of .03 by dumb
luck alone? We just saw that the probability that any one octopus generates ap-value of
.03 or lower by dumb luck alone is .03. Therefore, the probability that any one octopus
generates ap-value higher than .03 is .97. If there are two octopuses and they're making
their guesses independently, the probability that neither of them generates a p-value
better than .03 is therefore .972. So the probability that at least one of them generates
ap-value of .03 or better is 1 — .972 (i.e., one minus the probability that both generate
ap-value worse than .03). If ten octopuses are taking random guesses, the probabil-
ity that at least one generates a p-value as good as Pauls is 1 — .9710 ^ .26. In other
words, if ten German octopuses went through the same ridiculous prediction exercise
as Paul, there's about a 1 in 4 chance that at least one of them would have accumulated
a record of predictive accuracy at least as glorious as Paul's, even if none of the octo-
puses were in fact soccer experts. This should make us much more skeptical of Paul's
abilities.

We don't know how many German octopuses were in the soccer forecasting busi-
ness. But we do know that lots of other animals got in on the action. No joke, Leon
the Porcupine, Petty the Hippopotamus, Anton the Tamarin, and Mani the Parakeet all
forecast the winners of soccer matches around the same time as Paul. And those are just
the ones that made the news. Presumably, there were dozens more that we never heard
about. And this discussion only includes soccer. What about all the other sports? And
what about all the non-athletic things there are to predict? If Judy the Badger were good
at predicting the winners of college football games, Steve the Cat were good at predict-
ing the winners of congressional elections, and Fran the Otter were good at predicting
stock market shifts, they would be celebrities too. But their predictions turned out to be
no better than chance, so we never heard about them.

Budd and Spiegelharter, the mathematicians, were quick to point this out. Spiegel-
harter notes that "if someone flips a coin and gets the same result 9 or 10 times, it is
not remarkable in itself, but it will seem remarkable to the person flipping the coin."
In other words, if enough people flip coins, one of them is bound to flip a bunch of
heads in a row. And despite the fact that somebody was bound to have a lucky streak of
heads by chance, that person might wrongly conclude that they have an unfair coin or
that they are a particularly skilled coin flipper. Unfortunately, as we'll see, this problem
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applies to much more serious situations than coin flipping and soccer forecasting, with
far-reaching implications.

Publication Bias

Statistical hypothesis testing andp-values are clearly useful. When we find patterns
in data, we want to know if they reflect genuine phenomena or if they could have easily
been produced by random chance.

But there is a problem, which the story of Paul the Octopus highlights. Neither the
public nor the broader scientific community gets to see all the hypothesis tests that
were (or could have been) conducted. Often, the only results reported and published
are the statistically significant ones. It's just not that interesting to write about Mary the
Octopus, who is about as good as a coin flip at predicting soccer matches. But if there
are twenty different animals out there making soccer predictions, we'd expect one of
them to have ap-value less than .05 by pure luck, even ifnone of them actually have any
special insight into soccer. Only that 1 in 20 case will be written up or reported in the
news. So ifwe base our beliefs purely on what gets reported, we will have systematically
misguided beliefs.

Making a lot of comparisons, over-comparing, while selectively reporting only the
interesting or statistically significant ones, under-reporting, is a dangerous combination.
But it is widespread. And because of it, when we hear about a new, exciting scientific
result, it is much harder to know how likely it is to reflect a genuine phenomenon than
the simple logic of hypothesis testing suggests.

This problem of over-comparing and under-reporting doesn't just affect how con-
fident you should be that one particular finding is genuine. It also affects our ability
to accumulate knowledge over time in a field. We know that any one estimate, even if
unbiased, may be far from the true estimand because ofnoise. The hope is that as a field
accumulates estimates, the noise averages out, so that the average of a large number of
unbiased estimates gets very close to the true estimand. Over-comparing and under-
reporting means that this may not work for the collection of published estimates, a
troubling phenomenon called publication bias. To see why, lets go back to our favorite
equation:

Estimate = Estimand + Bias + Noise

Suppose there are a large number of studies, all on the same question. Each study is
really well designed, producing an unbiased estimate of the phenomenon under con-
sideration. So the only reason the estimates differ from one another or from the true
quantity of interest in the world (the estimand) is because of noise.

But let s also suppose, in the spirit ofunder-reporting (i.e., not reporting every result),
that we only hear about the results of studies in which the evidence is strong enough to
reject the null hypothesis that the true estimand is zero (i.e., that our estimate was the
result of noise). For a result to be statistically distinguishable from zero, the estimated
relationship must be sufficiently large, relative to the standard error. So ifwe only hear
about statistically significant results, we are only hearing about the estimates that were
sufficiently large in magnitude.

This means that, for any given true estimand, the estimates that end up being
reported will be those for which the noise happened to be large enough in magnitude to
push the magnitude of the estimate far enough away from zero to make it statistically
significant. So, as a result of over-comparing and under-reporting, not only will our
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Figure 7.1. Only reporting statistically significant estimates creates publication bias.

p-values be wrong, but the collection of estimates that we learn about from published
studies will systematically over-estimate the magnitude of the true estimand.

Distressingly, even though we started by assuming no bias in our estimates, we've
learned that the process of over-comparing and under-reporting introduces bias, not
into any one estimate but into the overall distribution of estimates reported in a sci-
entific literature. So, when we average all the estimates, we do not get close to the true
estimand, even if the number of estimates is very large. That is, we have what is called
publication bias.

Figure 7.1 illustrates how this works. In the top figure, we see fifty unbiased but
imprecise estimates. The true estimand is 1, and since our estimates are unbiased, the
average of all estimates is also 1.

We calculate the standard error and find that the 95% confidence interval is from —2
to 2. That is, the probability an estimate would have arisen even if there was no relation-
ship (i.e., the true estimand was 0) is less than 5 percent only if that estimate is greater
than 2 in magnitude. So only the estimates larger than 2 are deemed statistically signif-
icant (we don t have any estimates less than —2). The statistically significant estimates
are in the lower figure.

Suppose that only these statistically significant estimates are ever reported. Now, of
course, the reported estimates are systematically greater than the estimand. So if we
based our beliefs about the true value of the estimand on these published estimates,
we'd be systematically over-estimating the truth. This is publication bias.

Over-comparing and under-reporting that results in publication bias can arise in a
variety ofways. Lets consider a couple.

p-Hacking
One way we might end up with over-comparing and under-reporting is through

bad or dishonest behavior by individual analysts. The scientific community calls the
behavior of playing around with the data or tests until a p-value below a particular
threshold emerges p-hacking. For instance, suppose a scientist does an experiment and
doesn't quite get statistically significant evidence for the expected or desired result.
That scientist might reason that something probably wasn't quite right in the initial
attempt, and so try a slight tweak on the experiment. Indeed, the scientist can keep try-
ing similar experiments until one comes up statistically significant. Because of noise,
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if they try the experiment enough times, eventually they will get a result, even if there
is no real phenomenon being studied. That's the problem of over-comparing. And, of
course, if an unscrupulous scientist only reports the results from the one experiment
that yielded a statistically significant result, we have the problem of under-reporting
and, thus, publication bias.

Or maybe the analyst has some flexibility in how a particular statistical test is imple-
mented. Suppose you are asked to do an analysis at work about the relationship between
productivity and having a standing desk. Should you pool the entire workforce together
or run separate regressions for different age groups? Should you include higher-order
polynomials of age? Should you separate women and men in the analysis? How about
people with different job responsibilities, medical histories, and so on? As you can
see, there are lots of reasonable ways to think about doing the analysis. If you keep
trying out different ones, you'll eventually find a statistically significant result, even if
there is in fact no real relationship between productivity and standing. Searching over
specifications is, thus, another way of over-comparing.

Yet another way of over-comparing is by trying out lots of different outcomes. Sup-
pose you want to evaluate the efficacy of some new pill for heart disease. You might
run an excellent clinical trial that generates no bias at all. But perhaps you collected
data on lots of outcomes for the experimental subjects: mortality, heart attacks, strokes,
cholesterol, days of hospitalization, ability to exercise, subjective sense of well-being,
and so on. You can then test whether the pill has a statistically significant effect on each
of these outcomes. Ifyou have enough different outcomes, you're likely to find a statis-
tically significant result on one of them just due to noise—that is, the people given the
pill and the people given the placebo will happen to differ on some outcome, even if
the pill doesn't actually do anything. And, if you lack the proper ethics, you might just
report the results for that one outcome in the hope of convincing doctors to prescribe
your new pill.

As we've seen, p-hacking can take many different forms, and you have to work hard to
avoid it as a quantitative analyst and to detect it as a consumer ofquantitative evidence.1

p-Screening
Of course, p-hacking is a big concern. But it need not be the case that any individual

is acting in a dishonest or negligent way for the problem of over-comparing and under-
reporting to occur. It can happen even if absolutely everyone behaves in a completely
honest and responsible manner!

Imagine that twenty scientists around the country all have the same scientific hunch.
Let's suppose it's about the efficacy of a potential new cancer drug. In truth, the hunch
is false—the drug doesn't work. But there is no way for the scientists to know this at the
outset. So, as scientists do, they design studies to test the drug. Indeed, all twenty oftheir
labs, independently and unaware of the others, run the same high-quality experiment,
but on different samples. They each recruit a large sample of patients with the relevant
type of cancer. At random, they assign half of them to receive the new drug. The other
half receives a placebo sugar pill. At the end of the study period, they assess whether the

^un fact: The term p-hacking was coined by Joseph Simmons, Leif Nelson, and Uri Simonsohn in a clever
study in which they showed, among other things, that by using standard methods in social science, they could
provide statistically significant evidence that listening to the song "When I'm Sixty-Four" by the Beatles makes
subjects younger!
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group that received the drug was more likely to go into remission than the group that
received the placebo.

Nineteen out of the twenty labs find no statistically significant evidence—the remis-
sion rates among those who received the drug and those who received the placebo are
indistinguishable—and conclude that the drug doesnt work. Such null results arent
considered very exciting. "Another drug doesnt cure cancer" isn't a great headline. So
scientific journals are reluctant to accept papers reporting null results for publication.
As a consequence, these labs may not bother to write up their results, instead just mov-
ing on to more promising lines of research. This is sometimes called the file drawer
problem because statistically insignificant results get locked away in a file drawer. Even
ifthe labs do write up their findings, they might have trouble finding a journal interested
in publishing them. In either case we get under-reporting, and the scientific community
and the public fail to learn about these nineteen null results.

One (un)lucky lab out ofthe twenty finds statistically significant evidence suggesting
the drug works. We know the drug doesnt work (though the scientists don't), so we
know this is sheer chance. It just so happens that, for reasons having nothing to do with
the drug, the people assigned to receive the drug in this experiment also had higher
remission rates than the people assigned to receive the placebo. These things happen.
The estimate can differ from the estimand, even absent bias, because of noise.

Since the other studies were either never written up or never accepted for publica-
tion if they were written up, as far as the scientist in charge of this one lab is aware,
all existing evidence points toward this new drug working. So this one lab, appropri-
ately, writes a scientific paper on their findings. Because the result is surprising and
noteworthy, it is likely to be well published and reported on by the scientific press.
And, indeed, if you look at this one study, it looks great. The lab ran a good, unbiased
experiment. They made only the one appropriate comparison about the one appropriate
outcome. There was no p-hacking. And the data support their hypothesis. So everyone
believes this result even though it is in fact completely wrong and, if we had access to
all the data (i.e., from the nineteen "failed" experiments), we'd see that the preponder-
ance of the evidence points in exactly the opposite direction. That is, we end up with
publication bias.

There isn t a term in common usage that describes both scientists not bothering to
write up results that find small or no effects because they'll be hard to publish (which
is the file drawer problem) and journals being reluctant to publish such findings even if
they are written up. But we think these two phenomena are usefully thought oftogether,
since they both give rise to publication bias despite no individual acting inappropriately.
So, by analogy to p-hacking, we call this problem p-screening. The issue here isn t that
some individual researcher is p-hacking their way to a statistically significant result.
The issue is that the scientific community, through its publication practices, screens out
studies withp-values that are above some threshold. Underp-hacking we dont see null
results because dishonest researchers hide them. Under p-screening we don t see null
results because honest researchers can t publish such results. Either way the outcome is
the same. The results we do see suffer from publication bias due to lots of comparisons
being made but only the statistically significant ones being reported.

Yikes! Because ofp-screening, the scientific record (and our knowledge in a lot of
other areas) can be unreliable even when everyone behaves just as they should. This
should make you worry that it is going on all the time. In fact, stop and ask yourself,
For how many things I believe might this story characterize the state of knowledge?
Once you start thinking clearly about the problem, you'll see its potential everywhere.



122 Chapter 7

Are Most Scientific "Facts* False?

As weVe seen, over-comparing and under-reporting gives rise to publication bias.
And these practices are pretty deeply entrenched in a lot of scientific practice and cul-
ture. This realization has led to something of an existential crisis in many scientific
fields, with practitioners wondering whether many widely accepted scientific facts are
actually false, the artifacts of over-comparing and under-reporting.

This is a real concern. It is surely the case that many things that we believe are true are
in fact false because ofpublication bias. But certainly not everything. And analysts have
started to think more clearly about how we might diagnose when a scientific consensus
or literature is or is not likely to suffer from severe publication bias. To see how, we are
going to talk through a couple examples of the problem and various attempts to address
it. We'll even discuss some tips on how to detect p-hacking.

ESP

In 2010, Cornell psychologist Daryl Bern made news by publishing a study in the
Journal ofPersonality and Social Psychology, a prestigious academic psychology jour-
nal, claiming that human beings have extrasensory perception (ESP). Often, academic
researchers and quantitative analysts are the ones debunking claims about the paranor-
mal, but in this case, a respected, tenured Ivy League professor was the source of the
outlandish claim.

In Bern's experiment, students were asked to predict which virtual curtain on their
computer screen (left or right) had an object of interest hiding behind it. Bern reported
statistically significant evidence that his subjects were better than chance at predicting
the future and identifying the correct curtain.

This is a very exciting finding ifyou are a journal editor who cares about notoriety or
a science journalist who cares about readership. The result is cool. The scientist in ques-
tion works at a reputable university. The article is published in a major scholarly journal.
There is no reason to think the data are faked. The study provides scientific evidence of,
to say the least, a surprising phenomenon. What journalist with blood running through
their veins could resist the story?

This study and all the media attention it received notwithstanding, we're fairly
confident that people don't have ESP. So what is going on?

There are, of course, the normal concerns with statistical hypothesis testing. If an
analyst uses a significance threshold of .05, there's a 5 percent chance of finding support
for a result (i.e., rejecting the null), even if the result is false (i.e., the null is true). And
as we'll see in part 4, ifyou already have good reasons to believe that people do not have
ESP, then you shouldn't shift those beliefs much in response to this one study.

But we have other concerns based on the themes of this chapter. This is a case where
many researchers might be conducting experiments, but only the one with statistically
significant evidence of an unlikely phenomenon gets published. Presumably, nobody is
going to publish a paper that reports that people are no better than chance at guessing
the correct curtain. That's what we all already believe. So we should worry a lot about
publication bias due to p-screening.

We should probably also consider the possibility that the results werep-hacked. Bern
reported the results of nine different experiments carried out over the course of ten
years. These experiments are relatively inexpensive to conduct. Since Bern was, by all
accounts, committed to the study of ESP, it doesn't seem far-fetched to imagine that
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he might have conducted more ESP experiments over this ten-year period. And, if so,
the nine experiments that were reported on might well have been the ones with the
strongest confirmatory evidence of ESP.

There are also some signs of over-comparing and under-reporting within the study
itself. For example, Bern doesn't find evidence of ESP in general; he only finds it when
the object behind the curtain is erotic in nature. For other kinds of objects, he finds
no evidence of the paranormal. Of course! Wouldn't it make sense for humans to have
evolved ESP that allows us to detect erotic activity around the corner but not other kinds
of activity? Furthermore, in some tests, he only finds effects for women, not men; in
others, he finds results only for those who are easily bored. Given all of the different tests
conducted by Bern, it would be surprising if he hadnt stumbled upon a few statistically
significant results, just by chance.

Reassuringly, the community of psychologists remained skeptical and responded
quite quickly to Bems paper. Several follow-up studies tried and failed to replicate
the findings. Disappointingly, however, the Journal ofPersonality and Social Psychology
initially refused to publish the replication studies debunking Bems claim. The editor
justified this decision on the grounds that the journal has a long-standing policy of
refusing to publish mere replication. Fortunately, the journal eventually had a change of
heart and published a meta-analysis of replication attempts, which strongly suggested
that the original result was unreliable. This illustrates one important corrective to the
problem of over-comparing and under-reporting: a vigilant commitment to investigat-
ing whether findings replicate within a scientific community. We will discuss replication
in more detail later in this chapter.

Get Out the Vote

Political campaigns engage in lots of activities—phone calls, direct mail, door-to-
door canvassing—to try to get out the vote. Since the 1990s, scholars have teamed up
with campaigns to conduct experiments to learn about the efficacy of these efforts. In
such studies, some people are randomly assigned to treatment (e.g., a direct mailing
with information about the date ofthe election or the location oftheir polling place) and
other people are randomly assigned to control (e.g., not getting any extra information).
We can learn about the average effect of get-out-the-vote efforts on voter turnout by
comparing the turnout rates in the two groups.

In the published record, the average estimated effect of a get-out-the-vote interven-
tion is about a 3.5 percentage point increase in voter turnout. Moreover, almost no
published paper reports an effect of less than 1 percentage point. So, if a campaign con-
sulted the published record, it would conclude that get-out-the-vote efforts are quite
effective.

But there have been many more get-out-the-vote experiments than there are scien-
tific papers published on the topic—which means that some of those experiments did
not result in publication. Why not?

If our fears about over-comparing and under-reporting are right, we might expect
that the answer is p-screening—experiments that yielded no statistically significant
evidence of an effect did not result in a published paper. If this is true, then there is
publication bias. So we should expect that the true average effect of get-out-the-vote
interventions is smaller than what is suggested by the published findings.

Three political scientists, Don Green, Mary McGrath, and Peter Aronow, decided to
investigate this possibility quantitatively. They managed to get their hands on the data
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from over two hundred experiments done by a variety of scholars over many years.
Some of those experiments had resulted in published papers. Others had not. They
did an analysis to find the average effect of get-out-the-vote interventions across all
two hundred of these interventions. The result: half a percentage point! Dramatically
less than the 3.5 percentage point average effect shown in the published record. The
unpublished record is, indeed, much less supportive of the efficacy of get-out-the-vote
efforts than is the published record.

The efficacy ofget-out-the-vote efforts is one of the most rigorously studied topics in
the social sciences. And so, candidates or campaigns wanting to figure out the best way
to allocate scarce resources might naturally turn to published studies to inform their
decision. However, we now know that doing this would lead them to over-estimate
how effective get-out-the-vote efforts are by a factor of 7, demonstrating again that
p-screening can have serious consequences.

p-Hacking Forensics
It's always hard to know for sure ifp-hacking took place in an individual study. And it

is a good practice to be charitable, assuming that most people are attempting to behave
in an above-board and honest manner most of the time. That said, clear thinking can
help us get a sense of how widespread the p-hacking problem is. The best evidence
comes from observing the p-values in actual published scientific literature. Doing so
doesn't tell us whether any individual study is p-hacked. But it can help us sniff out
whether an overall literature looks like it has a bunch ofp-hacking going on.

Here's how it works. You start by thinking about what the distribution ofp-values in
a literature would look like in four different possible states of the world:

1. If there is no real relationship in the world and there is no p-hacking;
2. If there is a real relationship in the world and there is no p-hacking;
3. If there is no real relationship in the world and there isp-hacking; or
4. If there is a real relationship in the world and there isp-hacking.

You are then going to compare the actual distribution of reported p-values in a sci-
entific literature to the distributions you would get in each of these four states of the
world to try to figure out which state you are most likely to be in. For what follows we
are going to assume there is still p-screening going on (so there are no p-values greater
than .05). We just want to figure out if the literature is alsop-hacked. But everything we
are going to say is true even without p-screening.

The logic ofthe cases can be understood with reference to figure 7.2, which is adapted
from a 2014 study by Simonsohn, Nelson, and Simmons, who first proposed examining
the distribution ofp-values in order to assess p-hacking.

Start with case 1: there is no real relationship in the world and there is no p-hacking.
If there is no real relationship out there in the world, that means the null hypothesis is
true. And, as we've already discussed, if the null hypothesis is true, then all p-values are
equally likely to emerge in any given study. So, if there is no p-hacking, the observed
distribution of p-values in published studies should look approximately uniform—
that is, between 0 and .05, different p-values should appear with approximately equal
frequency. This is illustrated by the light-gray line in figure 7.2.

There are two reasons we might see a deviation from this uniformity. The first is that
there is a real relationship in the world. The second is that there isp-hacking.
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Figure 7.2. p-hacking distorts the distribution ofp-values in a literature.

This brings us to case 2: there is a real relationship in the world (i.e., the null hypoth-
esis is false) and there is no p-hacking. If we are actually studying a real relationship
in the world, we are more likely to detect a statistically significant relationship than if
there is no real relationship in the world. So, in case 2, where there is a real relationship
and no p-hacking, we expect a distribution ofp-values in the published record that is
skewed such that there are more low p-values. That is, reflecting the fact that we are
detecting a real relationship, there should be more lowp-values in case 2 than in case 1.
So, if we see a distribution with more low p-values, that is suggestive evidence that the
literature is detecting a real relationship in the world. This is illustrated by the dark
curve in figure 7.2.

The other reason we might see a deviation from case 1 is because ofp-hacking. This
takes us to case 3: there is no real relationship in the world and there is p-hacking. As
we've already discussed, when there is no real relationship in the world, every p-value
is equally likely. But, what happens in the presence of p-hacking? Well, suppose a
researcher finds a p-value below .05. They can just report that statistically significant
result. But suppose they find a p-value close to, but above, .05. They might be tempted
to p-hack, playing around with specifications, subgroups, and so on until they find a
p-value below .05 that they can report as statistically significant. The consequence of
this p-hacking will be a whole bunch of reported p-values close to, but just below, .05.
So, unlike in case 2, where we saw more low p-values than high p-values among sta-
tistically significant results, in case 3, we should expect more high p-values than low
p-values among statistically significant results. This is illustrated by the medium-gray
curve in figure 7.2.

Case 4 combines cases 2 and 3. Ifthere is a true relationship, that skews things toward
lowp-values. Ifwe alsop-hack, that skews things back toward highp-values. So it is hard
to know what to expect in this case. But, nonetheless, just with the distinctions between
cases 1,2, and 3, we can make some progress diagnosingp-hacking in a literature.
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Figure 7.3. Using the distribution ofp-values to diagnose p-hacking.

Sadly, many academic literatures exhibit a distribution ofp-values consistent with
case 3. Simonsohn, Nelson, and Simmons examined papers in a prominent psychology
journal to see if there were any red flags that might indicate p-hacking. They identified
certain words that might be a sign of over-comparing. For instance, one of their words
of concern is excluded, as in "I excluded this variable (or group, or outcome) from my
analysis because it didn t give the result I wanted." Another is transformed as in "I trans-
formed age into age2, age3, age4, and so on until the results supported my hypothesis."
The darker curve in figure 7.3 shows the distribution ofp-values for studies that don t
use words that are signs ofp-hacking. Reassuringly, for these studies, we see more low
p-values, indicating that they are identifying genuine relationships in the world (case 2).
The lighter curve in figure 7.3 shows the distribution ofp-values for studies that do use
words that are signs ofp-hacking. Disturbingly, for these studies, there is reason to sus-
pect p-hacking; we see more high than lowp-values (case 3). So, while these forensics
don t tell us exactly which papers are p-hacked, they allow us to look at the distribu-
tion of p-values in a literature and ask how worried we should be that any scientific
consensus based on those studies is biased byp-hacking.

Potential Solutions

Publication bias is an insidious problem for science. And so scientists have started
thinking about how they might change scientific practice to reduce the problem ofover-
comparing and under-reporting.

Reduce the Significance Threshold
Maybe we can solve the problem of publication bias by using a more stringent sig-

nificance threshold for p-values. Maybe the conventional .05 threshold makes it too
easy to hunt around until you find a statistically significant result. In 2017, seventy-two
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researchers across various fields published a letter in Nature Human Behaviour urg-
ing the scientific community to adopt a dramatically lower significance threshold of
p < .005.

On the one hand, a lower significance threshold would certainly make it harder to
conjure up a statistically significant result by over-comparing. On the other hand, lower-
ing the significance threshold would likely increase incentives forp-hacking by making
statistically significant results rarer and, thus, more valuable. It might even increase
complacency about these issues, leading us all to think a little less critically. And, while
a threshold of .005 means fewer false positives (i.e., rejecting the null hypothesis when
it is true), that comes at the cost of more false negatives (i.e., failing to reject the null
hypothesis when it is false). Its not obvious where we should draw the line to balance
that trade-off. The answer probably depends on the particular question.

Adjust p-Values for Multiple Testing
The p-value is supposed to tell us the probability of obtaining a result at least as

strong as your result if the null hypothesis is true. As we've seen, if researchers engage
in over-comparing and under-reporting, the p-value doesn't reflect this probability. It
is too low.

If we know how many tests were run, we can try to correct the p-value. As we dis-
cussed in the case of Paul the Octopus, if researchers conduct ten independent tests but
only report their lowest p-value of .03, the true p-value is more like 1 — (1 — .03)10 «
.263. Correcting p-values in this way to account for the number of tests run is a good
way for researchers to be transparent and for consumers of quantitative information
to better assess the state of the evidence. Unfortunately, this is also not a panacea. The
kind of simple calculation done above only works if the tests are truly independent. If
the tests are closely related to each other—for example, ifwe're testing the same hypoth-
esis with the same data but using slightly different variables in a regression or focusing
on slightly different subgroups ofobservations—ifmay be much less clear how to adjust
thep-values correctly.

Don t Obsess Over Statistical Significance
The threshold .05 is just an arbitrary number. Substantively important effects may be

statistically insignificant, and statistically significant results may be substantively unim-
portant. Statistical hypothesis testing is a useful tool for quantifying uncertainty, but it
can be abused. We should use p-values when appropriate. But they're not the end-all-
be-all for assessing the believability of a quantitative finding. You can't just calculate;
you have to keep thinking clearly. In part 4, we'll talk about how to incorporate quan-
titative evidence with other knowledge in order to think clearly about what our beliefs
should be after seeing some new evidence.

Pre-Registration
At least in some settings—such as when the researchers are creating the data them-

selves with a new survey or experiment—researchers can pre-commit to exactly the tests
they are going to do before they ever see the data. To do so, they pre-register their study,
writing down and publishing exactly what they plan to test for and how they plan to do
so, before actually doing the study. As long as they pre-register a reasonable number of
tests, this prevents them from over-comparing. It also makes it harder to under-report.
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People will be suspicious if a scientific paper only includes the results from 3 out of 10
promised tests. Moreover, some scientific journals are now willing to accept scientific
studies for publication based only on the pre-registered plan—committing to report the
results regardless ofwhat the researcher finds, which also helps with under-reporting.

Pre-registration is a useful tool for mitigating the problems of over-comparing and
under-reporting. Lets see an example of it in action, so we can get a sense of its merits
and its limits.

Requiringpre-registration in drug trials
The problem ofover-comparing and under-reporting is an important one in clinical tri-
als for new drugs—a company that has invested a lot in a new drug might be tempted to
search over specifications, subgroups, or outcomes until they find some result that sug-
gests the drug is efficacious for some outcome on some group of people. The National
Heart, Lung, and Blood Institute (NHLBI) has funded many clinical trials ofnew drugs
and dietary supplements since 1970, and in 2000, they came up with a clever way to
use pre-registration to combat this problem. They required the developers of a drug or
supplement to announce beforehand the goals of the product. Under these new rules,
a clinical drug trial is only declared a success if the researchers show a statistically
significant effect on the pre-registered outcome of interest.

A 2015 study by Robert Kaplan and Veronica Irvin shows that after the NHLBI
started requiring pre-registration, the rate of successful trials dropped from 57 percent
to 8 percent. This suggests that many of the "successful" trials prior to pre-registration
were the result of over-comparing rather than of any genuine effect of the drug or
supplement. This was a big success for pre-registration.

Importantly, even if pre-registration is working to curtail over-comparing and
under-reporting, we still have to worry about all the other problems of statistical infer-
ence. Think about the 8 percent success rate after pre-registration. Kaplan and Irvin use
a significance threshold of .05, which means that even if none of the drugs or supple-
ments were effective, we'd expect 5 percent to generate statistically significant evidence
of efficacy just by chance. So the 8 percent success rate is not much higher than what
we'd expect even if none of the drugs work. That means that even after we observe a
successful, pre-registered trial, we still should not be that confident that the drug is
effective. In fact, it looks like there's still a 5 in 8 chance that a positive, pre-registered
result is a false positive.

Replication
One way to assess whether an estimated effect is genuine is to replicate it on new,

independently generated data. Replication isn't foolproof. But, as we saw with the ESP
studies, it can help provide some evidence ofwhether an estimated effect is genuine or
just the result of over-comparing and under-reporting.

Suppose we do just one comparison and use a significance threshold of .05. The like-
lihood of finding statistically significant evidence of a relationship, even if none exists,
is .05. But ifwe run the study twice, using independent data each time, the probability
of finding statistically significant evidence in both studies ifno real relationship exists is
.05 x .05 = .0025. Ifwe do it a third time, the probability we find evidence for the non-
existent relationship in all three studies is .053 = .000125, pretty unlikely. By replicating,
we reduce the chance that we reach a spurious positive conclusion. This is especially
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true if the replication is done by independent teams who don't have a vested interest in
validating the initial finding.

Of course, replication is not a panacea, and we have to keep thinking clearly. Failure
to reject the null hypothesis is not proof that the null is true. So, if we only believe
results if they replicate multiple times, we might sometimes wrongly reject real effects,
especially if we conduct replications on sparse or noisy data, where effects are hard to
detect. Ideally, we'd get lots of data and replicate on large samples.

Sometimes such replication is feasible and sometimes it's not. If researchers con-
ducting a drug trial for a cholesterol drug happen to collect weight data and find an
unexpected effect of the drug on weight loss, researchers can recruit a new pool of sub-
jects and see if the new treatment group shows similar weight loss relative to the new
control group. But if we discover a phenomenon regarding twentieth-century guber-
natorial elections, the behavior of the moons of Venus, or leadership strategies in the
run-up to World War I, there's just one sample of them. There's no way to go collect
more data. In that case, we may want to think less literally and more conceptually about
replication. We do this not by directly replicating the existing findings but by asking
something like, "If this phenomenon is genuine, what are some other hypotheses that
should also be true?" Let's see an example.

Football and elections

Anthony has a paper with Pablo Montagnes that illustrates this approach. The paper
re-examines a prominent study by Andrew Healy, Neil Malhotra, and Cecilia Mo,
published in the Proceedings of the National Academy of Sciences, that claims that the
outcome of college football games affects who wins elections. Specifically, the incum-
bent party reportedly performs better in congressional and gubernatorial elections in
the home counties of teams that won prior to the election. This kind of finding makes
some people worry about democracy. (Not us, but that is a topic for another day.)

Anyway, the Healy et al. study is in many ways good. Football wins and losses seem
pretty random, so there isn't lots ofreason to be concerned about bias. But this is exactly
the kind of setting where you might worry about a false positive resulting from over-
comparing and under-reporting. For instance, there is almost certainly a p-screening
problem—would a prestigious scientific journal have published a paper showing that
college football games do not appear to have any influence on elections? Moreover, there
are lots ofsports that might have been used to predict incumbent success: other research
teams, studying the effects of basketball or curling losses on elections, may have found
no relationship and, thus, not published papers. So we shouldn't leap to conclusions just
because one published paper presents evidence supporting the claim that losses in one
particular sport are associated with election outcomes.

Anthony and Pablo couldn't conduct a purely independent replication because
there's no way to re-run decades of college football games and elections. Instead, they
thought about independent theoretical predictions—additional hypotheses that seem
like they should also hold iffootball losses really do affect elections. For instance, if foot-
ball losses affect elections, you might expect the relationship to be particularly strong
in places that care a lot about college football. Ifvoters blame incumbent politicians for
bad football outcomes, you might expect the impact of a football loss on the incum-
bent's party to be bigger when the incumbent is actually seeking reelection relative to
when some new candidate from the same party is running. And so on. Testing such
hypotheses, which speak to the underlying mechanism, is a way to probe whether some
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estimated effect is likely to reflect a real relationship in the world or is the result ofnoise
(i.e., a false positive).

Here are some examples ofwhat Anthony and Pablo found. It turns out that the esti-
mated effect of football games is smaller in counties where more people follow college
football than in counties where fewer people follow college football, no greater when
an incumbent actually runs for reelection as opposed to just the incumbent s party run-
ning a candidate, and just as strong outside the home county of the team as inside the
home county of the team. Furthermore, they found no evidence of a relationship bet-
ween football losses and electoral outcomes for NFL games, despite the fact that NFL
teams have the same kind of regional support as college football teams and NFL games
are roughly ten times more popular than college football games.

Anthony and Pablo tested multiple, independent theoretical predictions that seemed
like they should have held if the relationship between football and elections was real,
but none of them received support in the data. From this, they concluded that it seems
unlikely that college football games really do influence elections. This isn't a classic
replication. But it shows how looking at the evidence for additional hypotheses that
are related to the mechanism underlying the original hypothesis can help shed light on
the strength of the evidence for surprising results.

Related to the idea of independent replication is the use of hold-out samples, which
we discussed in chapter 5 when we talked about overfitting. Suppose you have a large
sample of data and want to explore it for relationships. It might be a smart idea to
hold out a randomly selected subset of that data from the exploration. For example,
you could randomly select half the observations and use them as an exploratory data
set. Then, after you've found a few interesting relationships, you could test whether
those relationships also appear in the hold-out sample of data that you have not
yet analyzed. If over-comparing produced a false positive in your initial analysis, we
would expect that the same relationship is unlikely to appear in the hold-out sample.
But if youVe identified a real phenomenon, then we should expect it to persist in the
hold-out data.

Test Important and Plausible Hypotheses
Ifyou read a study that would have never been published had the researchers found

the opposite ofwhat they found (e.g., failed to reject the null), you should be particularly
worried about over-comparing and under-reporting. But if a study answers a question
for which we care about the answer intrinsically, regardless of what that answer turns
out to be, a lot of the problems of over-comparing and under-reporting disappear. In
particular, if the findings can be published regardless of the result, we can worry less
about p-screening and we might think the researcher has less incentive to engage in
p-hacking.

Happily, many important scientific questions fall into this latter category. If a study
is testing a serious theoretical hypothesis, exploring a medical treatment that there are
good reasons to think might work, or evaluating a real policy intervention, the answer
is interesting, whatever it turns out to be.

By contrast, a lot of fun-sounding questions with surprising answers fall into the
former category. And, unfortunately, such studies appear irresistable to much of the
science press. Think of the ESP study. No one would be interested in a paper that found
no evidence for ESP. So there were concerns both about incentives top-hack and about
the file drawer problem. An example will illustrate the point.
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The power pose
A famous study by Amy Cuddy, Dana Carney, and Andy Yap purportedly shows the
remarkable efficacy of adopting a simple power pose. Our attitudes, the argument goes,
often cause our behaviors, rather than the other way around. And small changes to the
way you hold yourself can change your attitude. In particular, by standing in a posture
that you associate with being powerful, you will inspire feelings ofassertiveness and will
then behave accordingly.

Though the underlying science is strongly disputed, its promoters continue to argue
that striking the right pose causes people to experience feelings of power and leads
to physiological changes, including increased testosterone and Cortisol levels. There
were no pre-existing good reasons to think this might be true. And it is hard to imag-
ine a major journal publishing a study showing that adopting a power pose had no
effect on anything. So readers should have been skeptical from the outset. Nonethe-
less, because the findings were fun, surprising, and optimistic, the study got enormous
attention. It was published in a prestigious scientific journal and written up in major
media outlets, and Cuddy was invited to give what turned out to be a wildly popular
TED Talk.

Not surprisingly, the result turns out to be wrong. Multiple attempts at replication
fail to find similar effects. And one of the coauthors, Dana Carney, eventually went so
far as to disavow the work, documenting the many ways in which the finding was the
result ofp-hacking.

Beyond Science
We have focused on the ways in which over-comparing and under-reporting create

deep challenges for the scientific community. But, as the story ofPaul the Octopus illus-
trates, the problem is broader than that. Indeed, we suspect you run into it on a regular
basis, often without noticing.

Suppose someone is trying to sell you something—perhaps a car, financial advice,
or a subscription to a dating app. The salesperson might tell you, "This car was rated
number one in customer satisfaction five years after purchase!" Sounds great. But you
might want to ask yourself how many measures of satisfaction they looked at before
finding the one on which this car was rated number one. Did they look at reliability,
repair record, safety, longevity, gas mileage, and resale value in addition to customer
satisfaction? Did they also look one year from purchase, two years from purchase, three
years from purchase, and so on? Ifso, they made a lot ofcomparisons and told you about
the one that puts the car in the best possible light. This is not an unbiased estimate of
the car s quality; it reflects the salespersons equivalent ofp-hacking.

Similarly, your financial advisor might tell you, "This mutual fund outperformed the
S&P 500 for seven of the last eight years." That sounds good. But how did it do relative
to the Dow Jones or a broad market index? How did it do over the last nine years, ten
years, fifteen years? Did the advisor choose to compare to the S&P over the last eight
years because that was the natural comparison or because it was the comparison that
made the mutual fund look best?

In general, then, you need to think clearly about the problems ofover-comparing and
under-reporting not just when formally thinking about hypothesis testing and statistical
significance. Whenever you are offered a piece of evidence, you should be asking your-
self whether this particular comparison is the natural one or the first one you would



132 Chapter 7

have thought to look at. If not, you might pause to contemplate how many plausible
comparisons there are and, thus, how difficult it would have been to come up with some
comparison that made whatever point the speaker was trying to make.

In the spirit of appreciating the fact that this problem is, indeed, everywhere, let us
leave you with one final story that illustrates yet another way in which over-comparing
and under-reporting frequently rears its head—identifying superstars.

Superstars
We like to admire and study people who are really successful. We've already seen

one reason why this can produce misleading inferences: correlation requires variation.
Another reason that we shouldn't be so quick to admire and study superstars is that
there may not be anything particularly special about them beyond good luck.

Bill Miller majored in economics in college, served as a military intelligence officer,
dabbled in a doctoral program in philosophy, and worked as treasurer for a steel and
cement company before taking a position at Legg Mason Capital Management as direc-
tor of research in 1981, at the age of thirty-one. Miller was clearly a smart guy with a
promising career ahead ofhim. The next year, he began running the Legg Mason Value
Trust mutual fund. For the first decade or so, the funds performance was mediocre,
slightly underperforming the market average. But Miller eventually hit his stride, scor-
ing some big returns in the late 1990s and early 2000s. By 2006, fellow investors and
reporters noticed that Legg Mason Value Trust had outperformed the market for fif-
teen years running, an unprecedented streak that launched Bill Miller into the upper
echelons of finance stardom.

Inevitably, everyone wanted to know Millers secret. What made him such a suc-
cessful investor? Perhaps surprisingly, Miller didn't achieve his success by developing
intimate knowledge of niche industries or technical trading algorithms. His fund pri-
marily invested in a small number of already well-known companies like Google,
Amazon, eBay, J.P. Morgan, and Aetna. When describing his investment philosophy
in a 2006 letter to investors, Miller reported that he simply looks for the "best value."
He further speculated on what separates his fund from so many competitors: "We differ
from many value investors in being willing to analyze stocks that look expensive to see
if they really are. Most, in fact, are, but some are not."

Miller makes it sound easy. He just invests in companies that are undervalued. But
before we conclude that Bill Miller is a genius investor, let's consider the possibility that
Miller was simply lucky, like Paul the Octopus.

There is an idea in finance called the efficient-market hypothesis. It more or less
says that no fund or investment strategy should be able to systematically beat the mar-
ket average over the long run. Loosely, the logic goes like this. If some genius investor
came up with an investment strategy that predictably beat the market, other investors
would mimic that strategy. This would change the prices of the assets traded under that
strategy. Investors would keep doing this until that strategy no longer beat the market.
For instance, if a company's stock price fully reflects all available information about the
value of that company, which we'd expect in a large market with lots of people trad-
ing on the best available information, there should be no way to systematically predict
whether the stock price will go up or down without insider knowledge.

If the efficient-market hypothesis is right, then Miller and the other fund managers
and stock pickers are just doing the equivalent of flipping coins. And we know that if
enough people flip coins, a few of them will flip a long string ofheads by sheer luck. So,
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to assess whether Miller is indeed a genius, we need to ask how likely it is that he just
happens to be the one guy who hit a long string of heads by luck.

To get started, let s imagine that beating the market is really just like flipping heads
with a fair coin. This is our null hypothesis. Then we want to ask, If our null hypothesis
is true, how likely is it that someone would flip 15 heads in a row?

The chances that a given investor in a given 15-year period beats the market every
single year by chance is really low. The probability that some investor beats the market
by luck in one year is ^. The probability that an investor beats the market by luck two
years in a row is ^ x |. Extending this logic, the probability that a given investor beats
the market 15 years in a row by sheer luck is \ , or about 1 in 30,000. So maybe Miller
is a genius; if he was just flipping coins, there s only a 1 in 30,000 chance that he would
be so successful. But maybe not. Lets make sure we are thinking clearly about a few
things.

There are lots of investors out there, and if any one of them beat the market 15 years
in a row, they would have been just as famous as Miller, and we'd be discussing them
instead of him. Therefore, the relevant question is not how likely it is that one particu-
lar fund manager, Bill Miller, would beat the market 15 years in a row by chance. The
relevant question is how likely it is that some fund manger would beat the market 15
years in a row by chance.

Notice, this is just like publication bias or the problem of Paul the Octopus. With
publication bias, we only hear about the few studies out ofmany with statistically signif-
icant results. With Paul, we only heard about the one animal out ofmany who correctly
forecast a lot of soccer games. And, similarly, we only hear about the few investors who
have really long winning streaks. In all three cases, if we only think about the studies,
animals, or investors we get to hear about, we over-estimate how likely it is that their
success reflects a real phenomenon in the world.

In any given year, there are at least 24,000 professional funds trading, and presumably
each will continue trading if it beats the market. So lets assume (as our null hypothesis)
that there are 24,000 fund managers, none with any special insight. That means that
whether each of them beats the market in any given year is a 50-50 proposition. So
figuring out how likely it is that one of them beats the market 15 years in a row is just
like figuring out how likely someone is to flip 15 heads in a row if 24,000 people each
flips 15 fair coins.

Doing the same kind of calculation we did for Paul the Octopus, the answer is about
.52 or 1 in 2.2 It is very unlikely that any particular investor will beat the market 15 years
in a row by sheer luck. But when you consider the thousands of investors out there, its
actually more likely than not that one of them will beat the market 15 years in a row,
even if none of them has any special insight and they're all just flipping coins.

These calculations look even worse for Miller if we consider that a 15-year streak
would have seemed just as impressive had it started in another year. Once we consider
all the funds and all the possible 15-year periods, it seems extremely likely that some
fund manager would have such a streak at some point just by chance. These calcula-
tions, combined with our knowledge of the efficient-market hypothesis, should make
us skeptical of anyone who claims to know the secrets to beating the market. The sheer

2The probability that one investor gets 15 years in a row right is .515. So the probability that one investor
doesn't gets 15 years in a row right is 1 — .515. So the probability that none of 24,000 gets 15 years in a row right is
(1 - .515)24'000. So the probability that at least one investor does get 15 years in a row right is 1 - ((1 - .515)24.000),
which is approximately .52.
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number of traders and funds means that there are bound to be some exceptionally good
track records. And those are the ones we hear about. So, before handing over your life
savings to an investment manager, you should ask whether you would invest the same
money betting on Paul the Octopus's soccer picks. If not, let us recommend that you
consider low-cost index funds.

What do you think happened to Bill Miller after his flurry of press coverage in the
mid-2000s? The streak ended in 2006. His fund lost 55 percent of its value during the
2008 financial crisis, the fund continued to trail the market for several more years, and
he eventually stepped down from his post in 2012. Looking across the full thirty-year
period in which Miller managed Legg Mason Value Trust, it actually underperformed
the market. Alas, his historic winning streak still earns him regular appearances on cable
news programs, where he pontificates on market conditions and hot stock picks. In
2017, his new fund, Miller Opportunity Trust, was once again making news for impres-
sive returns in 2017. The secret? A big bet on Apple, the most highly valued company
in the world.

Wrapping Up
Over-comparing and under-reporting can happen because of nefarious researcher

behavior (p-hacking) or in a community of entirely honest researchers (p-screening).
In either case, it results in publication bias—the phenomenon whereby published results
are systematically misleading because there is a bias toward publishing statistically sig-
nificant findings. There is no simple solution to the problem of over-comparing and
under-reporting. But once we learn to think clearly about it, we can get a better sense for
when it is likely to be occurring and come up with some practices that at least mitigate
the problem.

In chapter 8, we turn to another challenge created by the presence ofnoise: reversion
to the mean. Once we learn to think clearly about reversion to the mean, we will see that
it, in combination with over-comparing and under-reporting, helps to explain what
appears to be a truly puzzling phenomenon—the tendency of scientific estimates to
shrink over time.

Key Terms
• Publication bias: The phenomenon whereby published results are system-

atically over-estimates because there is a bias toward publishing statistically
significant results.

• p-hacking: Searching over lots of different ways to run an experiment, make
a comparison, or specify a statistical model until you find one that yields a
statistically significant result and then only reporting that one.

• p-screening: A social process whereby a community of researchers, through its
publication standards, screens out studies withp-values above some threshold,
giving rise to publication bias.

Exercises

7.1 Briefly return to the question from chapter 6 about Petes roulette wheel.
Would you revise any ofyour advice or conclusions in light of the lessons from
this chapter?
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In late April 2020, the National Institutes of Health announced the results of a
study on the use of the drug remdesivir to treat COVID-19. Some COVID-19
patients were randomly given remdesivir; others were given a placebo. The
study found statistically significant evidence that treatment with remdesivir
reduced recovery time, as measured by the number of days it took for a patient
to be discharged from the hospital after being put on the drug. The study was
double blind (neither the patients nor doctors knew whether a subject had
been put on the real drug or the placebo). The study size was reasonably large
(hundreds of patients). And treatment assignment was random.

(a) On the basis of the lessons of this chapter, identify two more pieces of
information that would help you assess how confident you should be in
the efficacy of remdesivir.

(b) It turns out the study was pre-registered. The pre-registration plan
identified twenty-eight outcomes that the scientists were going to mea-
sure. How does this change your beliefs about whether the findings
identify a real effect in the world? Why?

(c) The pre-registration plan also identified one outcome as the primary
outcome of interest. That primary outcome of interest was the one
reported: how long it took for a patient to be discharged from the hos-
pital. Does this affect your answer to the previous question? Why or
why not?

(d) But wait, there is one final twist. The pre-registration plan was actu-
ally revised during the course of the study. It turns out that the length
of hospitalization was not listed as the main outcome of interest until
a revision on April 16,2020. Prior to that, the primary outcome of
interest was listed as a patient s score on an eight-point scale measur-
ing disease severity. This is reflected in the April 2, 2020, version of
the plan. The researchers, in a statement, explained that they had not
seen the data coming out of the study prior to changing their primary
outcome of interest. Reflect on how all of this affects your views on the
study's findings.

Download "VoterSurveyData2016.csv" and the associated "README.txt,"
which describes the variables in this data set, at press.princeton.edu/thinking
-clearly. Suppose we want to know whether prior exposure to Donald Trump
before he was a politician affected political behavior in the 2016 U.S. presiden-
tial election. To proxy for exposure to Trump, a survey asked people whether
they watched The Apprentice, %. television show starring Trump, and whether
they watched Home Alone 2, a movie featuring a cameo by Trump.

(a) Using the data available, try to find at least three interesting, statisti-
cally significant relationships suggesting that prior exposure to Trump
corresponded to political behaviors in the 2016 presidential election.

If you're struggling to find statistically significant relationships, think
about all the different things you can test for. You could use having seen
The Apprentice, Home Alone 2, or both as your measure of prior Trump
exposure. You can use support for Trump, support for Hillary Clinton,
or voter turnout in 2016 as your outcome of interest. You can subset
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the data to look specifically at voter subgroups of interest (e.g., women,
Blacks, Southerners, rich, young, and so on).
Once you ve found three statistically significant relationships, inter-
pret them substantively and think about what they mean. Did you learn
something interesting about American electoral behavior?
The data you just analyzed is real survey data from the 2016 Coopera-
tive Congressional Election Study. We randomly selected one thousand
respondents and shared a subset of their responses with you. However,
we lied above when we said that respondents were asked whether they
watched The Apprentice or Home Alone 2. We made those variables up.
(Sorry, we wont lie to you again.) Furthermore, the values for those
variables were generated completely at random. Explain why you were
nonetheless able to find a relationship between those variables and
political behavior. Would you expect that relationship to continue to
hold ifwe provided data on another thousand respondents and again
randomly generated the exposure data?

7.4 Find a recently published academic study for which you are worried about
the problems of over-comparing and under-reporting. Explain your concerns.
Without collecting additional data, is there anything the authors could do
to address or mitigate your concerns? Is there additional information you'd
like the authors to disclose? Are there additional analyses you'd like them to
conduct?
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Reversion to the Mean

What You'll Learn

• Lots of things tend to revert toward the mean, meaning that extreme observa-
tions are often followed by less extreme observations.

• This phenomenon will arise for virtually any outcome that is a function ofboth
signal (i.e., something real in the world) and noise.

• If you dont think clearly about reversion to the mean, it is easy to misinterpret
evidence.

• We shouldn't expect reversion to the mean for things that reflect our beliefs
about the future, like election projections or stock prices.

Introduction

As emphasized by our favorite equation, the world is noisy, and most quantitative
measurements reflect both the thing we meant to measure and noise. This has lots of
implications for the ways that we study and understand the world.

One of the most common yet least understood consequences of living in a noisy
world is reversion to the mean. Loosely speaking, unusually large or small measurements
tend to be followed (and preceded) by measurements that are closer to the mean.

Although reversion to the mean is not a standard topic in books on quantitative
reasoning and data analysis, its pervasiveness means that you will often be misled by
quantitative information if you don t understand this phenomenon. So we think it is
important to devote some time to it.

Does the Truth Wear Off?

In chapter 7 we saw that, because ofover-comparing and under-reporting, we should
often be skeptical of new, surprising scientific findings. And so, when such findings are
initially reported, often the first question that gets asked is "Does the result replicate?"
That is, if we were to run a new, independent study designed similarly to the origi-
nal study, would we find a similar effect? The instinct to ask this question is solid: we
are worried that some reported results reflect the vagaries of chance, rather than real
phenomena in the world. So, before hanging our hats on new findings, we want to see
that they hold up in multiple studies. And, in fact, researchers often fail to replicate
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hyped results in follow-up studies. Indeed, in some fields of study this is so common
that people have started talking about a replication crisis undermining confidence in
entire bodies of scientific enquiry.

Jonathan Schooler, a prominent psychologist at UC Santa Barbara, famously noticed
such a pattern of replication failures in some of his own most influential studies.
Interestingly, the effects Schooler estimated typically didn't disappear entirely when
replicated, but they did get systematically smaller. He asked around and found that
many colleagues had experienced the same thing; replicated results were often smaller
than the original findings.

One potential explanation for this pattern is that once youVe done a study and sub-
jects are aware of the results, they change their behavior. This phenomenon, whereby
subjects alter their behavior because they know they're being studied, is sometimes
called the Hawthorne effect.1 Another term—demand effects—refers to situations where
the subjects behave differently because they know what the experimenters are looking
for and are trying to please them.

Schooler and his colleagues quickly ruled out the Hawthorne effect and other similar
explanations because they found the same pattern in studies of birds, who presumably
have no idea what's being studied and don't care one way or the other about pleas-
ing human researchers. So what else could explain the peculiar pattern of disappearing
effects?

Schooler (perhaps jokingly) started referring to this phenomenon as cosmic habitu-
ation. He wondered whether there is some unknown force in the universe that causes

effects to shrink every time they're studied. One analogy he gives is to the habitua-
tion of human sensory perception. When something first touches your arm, you are
acutely aware of it. However, over time, you habituate, and your sensation of being
touched diminishes. Maybe the universe is like that. The first time we observe some
phenomenon, there is an acute effect. But, over time, the universe habituates to our
studies and we observe the effect less and less. In other words, scientists actually alter
reality every time they study it. Spooky.

Schoolers theory of cosmic habituation has received significant media attention,
including an episode of the popular radio show and podcast Radio Lab and an article
in the New Yorker entitled "The Truth Wears Off." But before we follow Schooler down
the path ofhypothesizing new cosmic forces, lets see if thinking a little more clearly can
help us resolve the puzzle of shrinking effect sizes a bit less mystically.

Francis Galton and Regression to Mediocrity
As we described back in chapter 5, Francis Galton made a similarly eerie discovery

in the 1860s. He collected data on the size of parents and their children. He did this for
human height. He also did it for plants, collecting data on the size and weight of the
seeds of parent and child sweet-peas.

Galton drew scatter plots of these kinds of data, putting the parents' size on the hor-
izontal axis and the children's on the vertical axis. Then he plotted a regression line

^un fact: The term Hawthorne effect comes from a study of the relationship between working conditions
and productivity at the Hawthorne Works factory outside Chicago. But it turns out that the data were analyzed
badly. The economists Steven Levitt and John List reanalyzed the original data and showed that what looked to the
original researchers like a Hawthorne effect was more likely attributable to other factors, such as differences across
days of the week, rather than the subjects changing their behavior in response to being studied.
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RATE OF REGRESSION IN HEREDITARY STATURE.
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Figure 8.1. A reproduction of Galtons illustration of reversion to the mean.

through the data. You can see one of Galtons plots, for the heights ofparents (adjusting
for biological sex) and their children, in figure 8.1.

Originally, Galton expected the regression line would be a 45-degree line—that is,
its intercept would be 0 and its slope 1. That seems a reasonable guess. It would be
true if, on average, children are the same size as their parents (again, adjusting for bio-
logical sex).

As it turns out, however, this guess is not correct for humans or for sweet-peas. Let's
look at Galtons figure. In that figure, the 45-degree line is labeled "Mid-Parents." The
phrase refers to Galtons measure of the average height of a child's parents, after first
adjusting to put female and male heights on the same scale. The (unlabeled) horizontal
axis corresponds to parents' height. Then, the line tracing out parents' height must be
the 45-degree line. The line labeled "Children" is the regression line running through
the data that takes as its x-value the parents' height and as its jy-value the children's
height.

As you can see in the figure, Galtons regression shows a positives-intercept—at the
lowest value on the horizontal axis (parents' height), the regression line lies above the
45-degree line. And Galtons regression line has a slope that is positive but distinctly less
than 1—the regression line is increasing more slowly than the 45-degree line.

What does this regression imply about the relationship between parents' height and
children's height? The fact that the slope is positive means that, on average, the taller the
parents, the taller their children. As you can see in the figure, the fact that the jy-intercept
is positive means that particularly short parents tend to have children who are taller
than they are. On the left-hand side of the horizontal axis (where parents are short),
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the regression line lies above the 45-degree line. But because its slope is less than 1, the
regression line increases less quickly than the 45-degree line. And, indeed, the two lines
cross in the middle. As such, on the right-hand side ofthe horizontal axis (where parents
are tall), the regression line lies below the 45-degree line. Particularly tall parents tend
to have children who are shorter than they are.

As we mentioned in chapter 5, Galton referred to this phenomenon as "regression to
mediocrity." And it is because of this word choice that we now use the word regression
to refer to the practice of fitting lines to data. It is also why some people refer to the
phenomenon whereby things tend to revert toward the mean (which is the subject of
this chapter) as regression to the mean. However, to avoid confusing the two concepts, we
will refer to the latter by its other common name, reversion to the mean also sometimes
referred to as mean reversion.

Galtons findings sound a lot like cosmic habituation. Perhaps there is some unseen
force in the universe that pushes size within families toward the average. Maybe when
the universe sees tall parents or big sweet-pea seeds, it restores order by making their
offspring smaller. Or perhaps when Galton measured the heights of the parents and
the diameter of sweet-pea seeds, he somehow made their offspring shrink! Galton was
probably perplexed by his unexpected findings. But he wasn't so quick to jump to
supernatural conclusions.

Eventually, Galton realized what was going on. Size is determined by many fac-
tors. For the purposes of seeing Galtons idea as clearly and simply as possible, lets
think about sweet-pea seeds. And lets imagine that a sweet-pea seeds size is influ-
enced by just two things: (1) the genes it inherits from its parent and (2) the amount
of direct sunlight it gets while growing. Inheriting genes for largeness from its mother
make a seed larger, all else equal. And getting more sunlight make a seed larger, all else
equal.

Under this simple model, let's think about how a seed can end up especially large or
especially small. Suppose you find a really large sweet-pea seed. It could be large because
it got genes for really large size from its mother. It could also be large because it hap-
pened to grow in a year with uncommonly good sun. Or it could be some combination
of the two. Odds are, if a seed is really large, it had both factors working in its favor: a
parent with genes for large size and excellent sun.

So what should we expect if these really big seeds are planted and produce offspring
oftheir own? They'll pass along their genes for larger-than-average size. But, most likely,
the child seed wont experience the same outstanding sunlight as its parent did. On
average, it will grow in average sun. So the child will be larger than average because
of the genes it inherited. But the child will probably be smaller than its parent because
its parent got particularly lucky with respect to sun exposure. The same holds for the
children of very small seeds. They get their parents' genes for small size. But they are
likely to experience better sunlight than their parents did and, thus, be larger than their
parents.

So, if this simple model were correct, we would observe exactly Galtons pattern.
Larger plants tend to have larger children (the regression line has a positive slope).
But size reverts toward the mean—really small parents tend to have children who are
smaller than average but larger than they are, and really large parents tend to have chil-
dren who are larger than average but smaller than they are (the slope of the regression
line is less than 1).

Obviously, seed size is more complicated than this. Many things influence it other
than genes and sun. But the example makes the point. We should expect reversion to
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the mean if size is partly determined by genes that are systematically transmitted from
parent to child and partly determined by idiosyncratic or random factors that are uncor-
rected across generations (like sun exposure). The same goes for human height, as we
see in Galtons plot.

More generally, there will be reversion to the mean for any outcome that's partly a
function of systematic factors (which we sometimes call signal) and partly a function of
random or idiosyncratic factors (which we sometimes call noise). Imagine an outcome
observed over and over, where with each observation, the outcome reflects a combina-
tion of a systematic signal (e.g., the genes) and random noise (e.g., sunlight). Extreme
outcomes typically arise because of extreme values of both the signal and the noise. In
other iterations, while the signal stays fixed, the noise takes a new, random value. And,
in expectation, the value of the noise will be average. So extreme values in one iteration
are expected to revert toward the mean in other iterations.

Many phenomena in the world have this signal and noise structure. So we should
expect reversion to the mean to pop up a lot. Therefore, thinking clearly about evidence
requires anticipating and accounting for reversion to the mean. In what follows, we first
delve a little more deeply into the nature of reversion to the mean to make sure we are
clear about exactly what is going on. We then consider a variety of different real-world
settings to understand when we should and should not expect reversion to the mean
to appear.

Reversion to the Mean Is Not a Gravitational Force

One common misconception about reversion to the mean is that it reflects some-
thing like a gravitational pull—that is, that the world is full of outliers and that
ineluctably, over time, things are being pulled toward the mean. This isn't right.

To see if you are thinking clearly about reversion to the mean, try answering each of
the following questions:

1. John Junior is exceptionally tall. 2. John Junior is exceptionally tall.
If you had to guess, would you If you had to guess, would you
guess that John Junior's son, guess that John Junior's father,
John III, is John Senior, is
(a) shorter than John Junior? (a) shorter than John Junior?
(b) the same height as John (b) the same height as John

Junior? Junior?
(c) taller than John Junior? (c) taller than John Junior?

Before we turn to the answers, lets start by noting that you should have given the
same answer to both questions. Understanding why is essential.

For many people, once they learn about reversion to the mean, question 1 is pretty
intuitive. John III is probably shorter than John Junior. John Junior is particularly tall.
So he probably has genes for tall height (signal). And he also probably had idiosyncratic
things happen that led him to grow particularly tall (noise). His son, John III, will likely
inherit his genes for tallness. But, ifyou had to guess, you'd guess the idiosyncratic other
factors will likely be more average. This is the logic ofreversion to the mean as explained
by Galton.

But, in our experience, question 2 is often a bit more vexing. You may be inclined
to reason as follows. John Junior is really tall. And there is reversion to the mean in
the world. So John Junior's height is probably closer to the mean than was his father's.
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Factoring in reversion to the mean, for John Junior to be so tall, his father must have
been a virtual giant! Hence, one might reason, while the answer to question 1 is (a), the
answer to question 2 must be (c).

It's okay if you thought something along those lines. The argument has a certain
appeal. But it is wrong, and its important that you see why. The answer to both
questions 1 and 2 is (a). And the logic for John Juniors father is identical to the logic for
John Juniors son: the logic of reversion to the mean. Here's how it goes, one more time.

Suppose you observe some outcome made up of signal and noise and that outcome
is surprisingly large. (The argument, of course, works for surprisingly small too.) Then
suppose you are going to observe another outcome, where the signal is the same as your
first observation, but there will be a new, independent draw of the noise. Since the first
observation is so large, it probably reflects a large value of the signal and a large value of
the noise. The new observation again has a large signal value, but the value of the noise
is likely to be smaller. So that new observation will likely be smaller.

Importantly, in making this argument, we said nothing about which outcome was
determined first in time. We just talked about the order in which you observed them.
Reversion to the mean is not a gravitational force pulling things toward the average
over time. For the logic of reversion to the mean, it makes no difference which came
first temporally. So, if John Junior is very tall, and his son has the same signal (genes)
but independent noise, then his son is probably shorter than him. And, if John Junior
is very tall, and his father has the same signal (genes) but independent noise, then his
father is also probably shorter than him.

The easiest place to see this in the real world is in data from athletic competitions,
where we observe the same competitor doing the same task over and over again. And,
what we see in those settings is that reversion to the mean characterizes the data, moving
forward and backward in time.

Figure 8.2 is a scatter plot ofscores from the first two rounds ofthe 2019 U.S. Women's
Open golf tournament. Players' scores from round 1 are on the horizontal axis and from
round 2, on the vertical axis. What do you see here?

On average, there is a positive correlation between scores in the two rounds; the
regression line is sloping upward. The players who did better (in golf, lower scores
are better) in round 1 also tended to do better in round 2. That makes sense: some
players are better than others (that's the signal). But the slope of the regression line
is far less than 1; the regression line is shallower than the 45-degree line. If a player's
round 1 score was worse than average, their round 2 score tended to be better than
their round 1 score. And if a player's round 1 score was better than average, their round
2 score tended to be worse than their round 1 score. It's exactly the same as the pat-
tern with the heights of parents and children or the size of mother sweet-peas and
their offspring discovered by Galton. And we can assure you that we didn't cherry
pick this example. It's a virtual guarantee that you'll see this same pattern for any golf
tournament.

A golf commentator might look at this data and tell a story to explain the scores.
Maybe the players who had a really good first round succumbed to the pressure. They
choked. And that explains why they did worse in round 2. And maybe the players who
had a bad first round realized they had to put in more practice, change strategy, or really
focus. And they accordingly improved their scores.

That's possible. But it could also just be reversion to the mean. Golf scores are a
function of both skill (signal) and luck (noise). The players with the best score in a
given round are probably better than the average player in the field. But they probably
also had some luck on their side. A few putts went in that could have just as easily lipped
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Figure 8.2. Scores across rounds in the 2019 U.S. Women's Open golf tournament. In cases where mul-
tiple players had identical scores, the size of the circle is increased to reflect the number of players. The
45-degree line is dashed, and the actual OLS regression line is solid.

out. Their few bad shots got fortunate bounces, keeping them out of trouble. And so on.
In their other rounds, they're still better-than-average players, so we expect their scores
to be better than average. But they probably wont have the same good luck, so their
score will probably be worse than in that exceptional round.

Notice, nothing in the previous paragraphs logic depended on which round came
first. That's because reversion to the mean isn't some gravitational force pulling things
toward the mean over time. This realization allows us to probe which story—the
commentator's or reversion to the mean—is more likely to be true.

Think about a player who has a particularly good score in round 2. Should we expect
their round 1 score to be better or worse than their round 2 score? The old temptation
was to think that because of reversion to the mean, in order for them to have a good
score in round 2, they must have had a really good score in round 1, allowing them to
still have a good round 2 score despite reversion to the mean. But we now know better.

The logic of reversion to the mean has nothing to do with time. The score in each
round of golf is a combination of signal and noise. If a player had a particularly good
round at some point, we should expect a different round by that player (with the same
signal but different noise) to be worse, regardless of which round came first. And if a
player had a particularly bad round at some point, we should expect a different round
by that player to be better, regardless ofwhich round came first.

Figure 8.3 shows the same graph you saw before, but with the axes flipped so that
round 2 is on the horizontal axis and round 1 is on the vertical axis. The overall pattern
is almost exactly the same. People who had particularly good scores in round 2 were
better than average in round 1 but still worse in round 1 than in round 2. Just like with
John Junior and John Senior, reversion to the mean works backward in time just as well
as it works forward in time.
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Figure 8.3. Scores across rounds in the 2019 U.S. Women's Open golf tournament, with flipped axes.

Seeing both versions of the graph demonstrates why the commentators explanation
is unlikely to be right. It is hard to believe that a good score in round 2 causes players to
feel extra pressure, which somehow goes backward in time, making their round 1 score
worse. And yet, we see the same pattern whether we look forward or backward in time.
The explanation is reversion to the mean.

Seeking Help
Reversion to the mean can be particularly problematic for clear thinking in settings

where we seek help when things have gone unexpectedly wrong (e.g., you suddenly
become ill or you do poorly on an exam). Why is this?

If things have gone unexpectedly wrong, that suggests we have some underlying
expectation of how things should be going—perhaps formed on the basis of long past
experience—and that we have deviated from that expectation in a bad direction. We
might think of the expectation of how things should be going as reflecting the signal.
And deviations from that expectation might reflect noise.

Lets think about that in a couple of concrete settings.
Suppose you are a relatively healthy person. You might think of good health as

reflecting the true underlying signal for you. Even most fundamentally healthy people
feel unwell from time to time—because of the flu, a back ache, or what have you—
for idiosyncratic reasons that perhaps do not reflect any fundamental change to their
underlying state of healthiness. And most healthy people also have days when they feel
particularly vigorous and well. Thus, we might think of a day when you feel fine as
reflecting your true signal, with very little noise. Days when you feel sick can be thought
of as days with particularly negative values for the noise. And days when you feel like
you could go out and conquer the world can be thought of as days with particularly
positive values for the noise.
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Or maybe an example about school will speak more directly to our readers. You have
some underlying level of academic skill that reflects how strong a student you are in
any given area. That is your true signal. But some days you do way better than normal
on a test—perhaps reflecting a particularly lucky draw of questions or a particularly
good night s sleep. And some days you do way worse than normal on a test—perhaps
reflecting an unlucky draw of questions or a late night. These idiosyncratic features
constitute noise.

Now, what does this have to do with reversion to the mean? Ask yourself, On which
days is a person likely to seek help from, say, a chiropractor? Probably on days when they
wake up with a back ache that feels worse than normal—that is, on days when the noise
is particularly negative. And ask yourself, Which students seek out help from a test prep
company? Probably students whose performance on an important standardized test was
worse than they had anticipated given their sense of their underlying ability. If this is
right, then reversion to the mean tells us that, even if chiropractic adjustments or test
prep strategies don t actually help at all, we should expect people who seek out this kind
of assistance to see improvements. And, if they arent thinking clearly about reversion
to the mean, they are likely to give too much credit to the chiropractor or the test prep
company. Reversion to the mean can be a good business model.

This kind ofproblem is pervasive. WeVe already seen an example in chapter 1, where
we discussed broken-windows policing. Recall that, in New York City, when the police
rolled out a new strategy, they targeted the highest crime precincts and found that, after
the change of strategy, crime went down in those precincts. But this is just what we'd
expect from reversion to the mean, even if broken-windows policing doesn't work at
all. The highest-crime precincts will tend to get better and the lowest-crime precincts
will tend to get worse, regardless of any policy change. Because of this reversion to the
mean, policing strategies that target the highest-crime precincts will look to the naive
observer as if they are really effective, even if they arent.

And, actually, reversion to the mean was lurking underneath another of our exam-
ples in chapter 1. Remember when Ethans sons doctors recommended that he try out
a gluten-free diet because he was underweight? Their idea was that, if his weight per-
centile increased once he went on the gluten-free diet, that would be evidence ofgluten
intolerance. But reversion to the mean says that we should have expected Abes weight
percentile to increase even with no intervention. Month to month, a baby's weight is a
function of both signal (e.g., health, genetics) and noise (e.g., random features of the
environment, idiosyncrasies in the growth trajectory). If a kid has off-the-charts low
weight in one month, he probably had extremely low values on the noise terms that
month. Over time, we should expect more average values on the noise, so his weight per-
centile should increase. It would be a mistake to interpret this, on its own, as evidence
that some change in behavior (e.g., going gluten-free) explains the weight increase.

Once you think about it clearly, you'll see that all kinds of interventions and treat-
ments will look like they work even if they do nothing. People typically seek out help
when things are at their worst. We'd expect things to improve, even without an interven-
tion, because of reversion to the mean. Let's look at one particularly striking example
that scientists have actually investigated to see whether this is going on.

Does Knee Surgery Work?
There are many expensive medical treatments for which the best available evidence

is not so different from the evidence for broken-windows policing or SAT prep. For



Reversion to the Mean 147

instance, there are no randomized trials validating the efficacy of a variety of kinds of
surgery. Consider a patient who goes to the surgeon with joint pain of some sort. The
doctor recommends surgery. At the end of a recovery period, the patient says they feel
better. Now, the doctor may have all sorts of knowledge about body mechanics and
physiology that provides some good reasons for believing the surgery did help. But we
should at least entertain the possibility that reversion to the mean is also at work—that
is, that many patients would have experienced at least some significant improvement
without surgery.

Indeed, once a randomized trial is run, researchers sometimes find that a common
surgery does not in fact provide the hypothesized benefits. For example, in a 2002 study
of arthroscopic surgery for osteoarthritis of the knee, researchers found that the com-
monly prescribed surgeries had no detectable effect on knee pain. Yes, patients reported
less knee pain two weeks after surgery, but other subjects who simply received skin inci-
sions and were told that they received the surgery reported the same reduction in knee
pain. That's right: doctors actually gave sham surgeries to some of their patients, and
those deceived patients were no worse offthan those who received the real surgery. Why
did all the patients seem to feel better? Presumably, you only go under the knife for knee
pain when its especially severe, so most of those patients might have felt better in a few
weeks even without the surgery.

Reversion to the Mean, the Placebo Effect, and Cosmic Habituation

We've just seen that, if we fail to think clearly about reversion to the mean, we are
likely to misinterpret the extent to which certain kinds of interventions, including med-
ical interventions, are actually responsible for improved outcomes. But, it turns out,
reversion to the mean can even create problems when we try to do careful scientific
studies. Lets see why this is the case in a couple different settings. First, we will con-
sider the much discussed placebo effect. Then we will revisit the problem of cosmic
habituation with which we opened this chapter.

The Placebo Effect

Few phenomena in medicine are cited more often than the so-called placebo effect.
Many people suspect that the belief that we've undergone treatment somehow activates
the body's own healing powers, independent of the direct effects of the treatment itself.
For this reason, medical researchers are careful to compare the effectiveness of new
drugs or treatments to placebos. They want to account for the possibility that believing
you're receiving a treatment will heal you all on its own. So they use things like sugar
pills or fake surgeries, so that experimental subjects don't know whether they are getting
a real treatment or not.

Why do medical researchers, and others, think that there's a placebo effect? One
source of evidence comes from medical trials themselves. In such experiments there
is a treatment group that gets the drug and a control group that gets a placebo pill. And
often, in such studies, both groups' health improves. The improvement of the control
group is taken as evidence for the placebo effect.

But now you can see that this kind of evidence for the placebo effect is unconvinc-
ing. The people in the control group (and the treatment group) entered the medical
study because they were unwell. We might expect them to tend to get better even in
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the absence of any treatment. This need not be because their minds are healing their
bodies. It could just be reversion to the mean.

If you actually wanted to test for a placebo effect, you'd want to divide the pool of
experimental subjects into a group that got a placebo pill and a group that got no treat-
ment at all. (Of course, you could also have a group that got the real medicine. Lets not
forget why we are here in the first place.) Few studies explicitly test for the effect of a
placebo treatment relative to no treatment. The ones that do typically find no evidence
of a placebo effect. Moreover, those studies that do find evidence for a placebo effect
typically concern purely subjective outcomes. So people may perceive themselves to be
feeling better after taking a placebo, even if they aren't objectively healthier.

For example, in 2011, a team of researchers from Harvard Medical School pub-
lished a paper in the New England Journal of Medicine comparing the effects of real
medical treatments, placebo treatments, and no treatment for asthmatic patients. Inter-
estingly, both the real treatment (an albuterol inhaler) and the placebo treatments
(a placebo inhaler or acupuncture) led patients to report that they felt better. But when
the scientists actually measured the subjects' lung capacity, only the real treatment had
an effect; the placebo treatments were no better than doing nothing. So to the extent
that there's evidence for a placebo effect, it's evidence of mind over mind, not mind
over matter.

In short, once we think clearly about reversion to the mean, we see that there's lit-
tle compelling evidence of a placebo effect in medicine. Yet somehow, almost everyone
believes in the placebo effect because they're bad at recognizing and correctly inter-
preting reversion to the mean. Even some ofthe greatest medical researchers have fallen
victim to this confusion. Vitamin C is widely believed to provide significant health bene-
fits, despite little evidence. (To be clear, a small amount ofvitamin C is necessary to avoid
scurvy, but for almost everyone in the developed world who naturally consumes some
vitamin C, there is little evidence that additional vitamin C is beneficial.) An important
source of this widely held superstition is Linus Pauling, a world-famous chemist and
two-time Nobel Prize winner, who strongly advocated for vitamin C. Some argue that
Pauling knew that vitamin C had little effect, but he believed in the placebo effect, and
he thought that telling people that a vitamin C supplement, or a glass of orange juice,
would heal them was a cheap and easy way to get the placebo effect working, inducing
the human body to somehow cure itself.

Cosmic Habituation Explained
If you are paying particularly close attention, you might have noticed a connection

between the talk of signal and noise in this chapter and our favorite equation. Recall,
our favorite equation says that an estimate from data is made up of three things—the
true estimand, bias, and noise:

Estimate = Estimand + Bias + Noise

Imagine a study that is really well designed to learn about an estimand so that there
is no bias. The estimate generated by that study will be made up of the true estimand
and noise from things like sampling variation. The true estimand stays constant across
different studies of the same phenomenon. But the resulting estimates nonetheless vary
from study to study because of the noise. So, ifwe imagine multiple studies of the same
phenomenon, we can think of the true estimand as the signal. And we can think of the
noise as, well, the noise.
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Given this, we should expect repeated scientific studies of the same phenomenon to
exhibit reversion to the mean. If the first study found a particularly large relationship, it
is probably the case that the true relationship in the world is big, and it is also probably
the case that the sampling variation happened to create noise in the positive direction
in that study. In the next study, we should expect to find a smaller estimate because,
while the true relationship (i.e., the estimand) is still probably large, the noise from the
sampling variation will probably not be as large this time around.

With this realization, we are now, finally, ready to return to the idea ofcosmic habit-
uation and see why it probably isn't best explained by a mystical force whereby the
universe accustoms itself to the activity of scientists here on earth.

Ifit isn't mystical forces, why do estimated effects tend to get smaller when replicated?
Part of the answer is reversion to the mean. But that's not the whole answer. To really
understand what is going on with cosmic habituation, you need to combine our new
understanding of reversion to the mean with our discussion of publication bias from
chapter 7. Let's see why.

Imagine several scientists, independently studying some phenomenon—say,
whether giving people time to think leads them to make better decisions, which is one
of Jonathan Schoolers areas of interest. Each scientist does a study. One finds that peo-
ple who are given time to think make dramatically worse decisions. Another finds that
people who are given time to think make slightly worse decisions. A third finds no
relationship. And a fourth finds that people who are given time to think make slightly
better decisions. Given the sample size of the various studies, only the large finding is
statistically significant.

What generates these different estimates? Presumably, there is some true effect of
giving people time to think on the quality of their decisions. This is the estimand in
our favorite equation. We can also think of it as the signal that is common across each
of these studies. But then there are lots of idiosyncratic features, the noise, that affect
the observed relationship (the estimate) in any given study. For instance, even though
these are experiments, in any one of them, by happenstance, it could occur that the
people given time to think turn out to be intrinsically much worse decision makers
than the people not given time to think. This large negative noise term would lead that
study to find a particularly large negative effect. In another study the people given time
to think might happen to be intrinsically slightly better decision makers than the peo-
ple not given time to think. This positive noise term would lead that study to find a
more favorable relationship between thinking time and decision making. So, we can
see, the results of these studies are made up of both signal and noise. Thus, we should
expect replications to experience reversion to the mean.

Now let's think about which of the findings are most likely to be replicated. From our
earlier discussion ofp-screening and publication bias, ifwe had to guess, we'd guess that
only one of these studies is notable enough to the original researcher or the scientific
community to warrant an independent replication—the one with the large, statisti-
cally significant negative relationship between time to think and the quality of decision
making. This study has two things going for it over the other studies. First, it has a sta-
tistically significant finding, so it is more likely to be published. Second, that finding is
pretty surprising—who would have thought that thinking things through leads to worse
decisions?

Imagine that this is what happens. One large surprising finding gets published. It
was found in a well-designed study, so people think it is probably true. But, because it
is an important result, scientists will also want to see if it replicates. What should we
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expect them to find? Well, we just saw that a finding is more likely to get published and
warrant replication (both because of its surprise value and because it is more likely to
pass the statistical significance threshold) when the estimated effect size is particularly
large in magnitude. But we also know that particularly large estimates are probably the
result of both large values of the signal and large values of the noise. So, because of
reversion to the mean, when we go to replicate this study, we should expect to find a
smaller (in magnitude) estimated effect size (as, indeed, the other three, unpublished
studies had found). That is, because of a combination ofpublication bias and reversion
to the mean, we should expect to see cosmic habituation!

Cosmic Habituation and Genetics

Figure 8.4 is our favorite illustration of the phenomenon of cosmic habituation
resulting from publication bias and reversion to the mean. The figure describes the
changing evidence on the link between particular genes and particular diseases. The
different curves represent different hypothesized gene-disease linkages. Each data point
shows the sign and size of the estimated relationship, taking into account all the avail-
able data at any given point in time. In this particular graph, a value of 1 on the vertical
axis means that the evidence shows no relationship at all between the gene and the dis-
ease. A value below 1 means that the evidence shows a negative relationship between the
gene and the disease. And a value above 1 means that the evidence shows a positive rela-
tionship between the gene and the disease. The farther from 1, the larger (in magnitude)
the estimated relationship.

The data points on the far left of the plot are the estimated relationships between
genes and diseases from the very first study published on the topic. Moving to the right,
the next data point shows the estimated relationship taking into account the data from
both the first and second published studies. This continues as we move to the right,
until we get to the most recent published study.

What you can see in figure 8.4 looks like cosmic habituation. The first published
study finds a large relationship between a gene and a disease. This is the kind of study
that gets published in a prestigious journal and covered in the press. But as scientists
engage in replication, reversion to the mean kicks in. The magnitude of the estimated
effects is typically smaller in subsequent studies. As we add more and more informa-
tion, we get closer to the truth, which is quite far from the over-estimate reported in the
initial study. As we see, by the end, the evidence suggests at most a very weak relation-
ship between the gene and disease in question. The follow-up newspaper story is rarely
written.

Beliefs Don't Revert to the Mean

Once you understand reversion to the mean, you should start to worry about it a lot.
Commentators, analysts, and casual observers constantlymisunderstand it, introducing
complex theories to explain patterns that reflect a simple statistical phenomenon. The
preceding discussion makes it sound like we should expect reversion to the mean almost
everywhere, and to a close approximation, that's right. We should see reversion to the
mean for any variable that is influenced by signal and noise. So instead of listing all
the instances of reversion to the mean, let s think about situations where we shouldn't
expect it.
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Figure 8.4. The estimated effect size shrinks as more data is accumulated in genetic studies.

First, if the signal is much greater than the noise, then we wouldn't expect to see
much reversion to the mean. Suppose we repeated our earlier golf analysis, but instead
of plotting scores from two different rounds within one tournament, we plotted aver-
age scores from two different seasons on the LPGA Tour. An average score from an
entire season contains a lot more information about a players ability. Much of the good
and bad luck that constitutes the noise across rounds averages out, so there will be less
reversion to the mean in that picture (but still some).

But there are some situations where we should expect no reversion to the mean at
all. Let's think about the stock market. Should we expect to find reversion to the mean
in stock prices? Maybe we could beat the market and become billionaires by exploiting
reversion to the mean.

Reversion to the mean would seem to predict that, on average, companies with low
stock prices should rebound in the future, and companies with high prices should drop.
It also seems to predict that increases should be followed by decreases and vice versa.
Could we exploit this information by buying the stocks that just dropped and selling
the stocks that just increased?

The answer to this question is almost surely no. Suppose it were the case that there
was reversion to the mean in stock prices. Clever investors would realize this, follow the
strategy described above, and make a lot ofmoney. But with enough investors following
this strategy, the reversion to the mean would go away, because the prices of the low
stocks would increase and the prices ofthe high stocks would decrease in response to the
market's buying and selling decisions. The efficient-market hypothesis, discussed briefly
in chapter 7, says that with enough traders looking for these kinds of opportunities, we
shouldn't be able to predict changes in stock prices, and therefore, we shouldn't expect
reversion to the mean.

Reversion to the mean is quite prevalent in the business world. We see it for cor-
porate revenues and profits, despite the desire by startups and venture capitalists to
project future revenues by making linear or sometimes exponential projections from
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past revenues. So why don t we see reversion to the mean for stock prices? The main
reason is that stock prices reflect beliefs about the future, while revenues don t. The
price of the stock is driven by investors' beliefs about the long-term value of the firm.
And if there were reversion to the mean, it would suggest that investors are making sys-
tematic mistakes in forming those beliefs. If there were a stock that we could expect to
increase in price, investors would all buy it, driving the price up, erasing our expectation
of a change.

The stock market is just one example of a general phenomenon. There should be no
reversion to the mean when it comes to beliefs. It wouldn't make sense to say something
like "Today, I believe that Republicans have a 60 percent chance of winning the House
in the next election, but come Election Day, I expect my belief to be lower." That doesn't
make sense because your belief is just your belief about the future—nothing else. Ifyou
expect that your belief will be 55, rather than 60, percent on Election Day, then your
belief should be 55 percent today.

Wrapping Up
In part 2 we have learned how to quantify correlations and how to assess whether

correlations found in data are likely to reflect real phenomena or just noise. We then
turned to other challenges created by the presence of noise—over-comparing and
under-reporting and reversion to the mean.

Importantly, our favorite equation told us that noise is not the only reason an estimate
might not equal the estimand. We also have to worry about bias. For reasons that we
started to learn about in chapter 3, bias is a particularly important concern when we
are trying to learn about causal relationships—when we say correlation doesn't imply
causation, what we mean is that the correlation between two features of the world may
be a biased estimate of the causal relationship between them. In part 3, we will focus on
causal relationships, first examining the sources ofbias in more detail and then learning
about strategies for estimating causal relationships in an unbiased way.

Key Words
• Hawthorne effect: The phenomenon whereby subjects change their behavior

because they know they are being studied.
• Demand effect: A specific instance of a Hawthorne effect in which research

subjects change their behavior to try to please the researcher.
• Signal: The systematic component of an outcome that is persistent across

observations.

• Noise: Random components of an outcome that change from observation to
observation.

• Reversion to the mean: The phenomenon whereby, if one observation of an
outcome made up of signal and noise is particularly large (respectively, small)
other observations will typically be smaller (respectively, larger).

Exercises

8.1 Early on in every baseball season, someone appears to be on pace to break the
home-run record, but they almost never do. Let's think about why.
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Suppose you hit a phenomenal number of home runs in the first twenty
games of the season, and you're on pace to break the record.
(a) In the next twenty games, are you more likely to hit an above-average

or below-average number of home runs? Why?
(b) In the next twenty games, are you likely to hit fewer home runs, the

same number of home runs, or more home runs than you hit in the
first twenty games? Why?

(c) A commentator notices that players on pace after the first twenty games
almost never break the record. The commentator argues that this shows
that players lose their nerve when they start thinking about setting the
record. What data might you want to collect, and how might you want
to analyze it in order to see if this interpretation is right?

Anthony once took a course from a famous econometrician who made the
following argument: Pauls son John has a genius-level IQ. Therefore, because
of mean reversion, Paul himself must have had a super-genius-level IQ.
(a) What's wrong with the econometricians reasoning? Ifyou had to guess,

is Pauls IQ lower or higher than average? Is it lower or higher than
Johns?

(b) How would your answer change ifwe told you that the Paul in this
example is Paul Samuelson, a Nobel Prize winner considered by many
to be the foremost academic economist of the twentieth century?

At the time of this writing, the stock price of Zoom (a company specializing
in online video conferencing, with which many of us became all too familiar
in the year 2020) has just fallen by about 18 percent in response to Joe Biden
winning the 2020 U.S. presidential election and the release ofpromising results
on COVID-19 vaccines. Because of mean reversion, your friend argues that
now would be a great time to buy Zoom stock.
(a) Explain to your friend, in laypersons terms, what s wrong with their

reasoning.
(b) Without knowing any additional details except that Zoom stock

recently fell, would you expect your friend to make money, lose money,
or break even on this investment?

Psychologists argue that the extent to which someone can accurately assess
their own ability in some domain depends on their ability in that domain.
Perhaps people who lack ability in a particular area don t even know enough
to know how deficient they really are. Named after the researchers who first
developed this hypothesis, this phenomenon is often called the Dunning-
Kruger effect.

The typical evidence offered in favor of the Dunning-Kruger hypothesis
is shown in the figure below. Subjects were first asked to predict their own
IQ, and they later took an IQ test. The figure shows a scatterplot of these two
scores for each subject. The regression line is shown in gray, and the dashed,
45-degree line is in black. People with low IQs (as measured by the test)
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tended to over-estimate their score, and people with high IQs (as measured
by the test) were, on average, correct.

n 1 1 1 1-
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Test-assessed IQ

(a) Can you come up with another explanation for this empirical phe-
nomenon that wouldn't necessarily imply that high-IQ people are better
at assessing their own IQs? You'll want to think about mean reversion,
but that alone won't do the trick since the high-test-score people didn't
under-estimate their IQ. Perhaps you'll also want to think about bias.
Remember our favorite equation.

(b) To check your intuitions, simulate some data on your computer that
generates a similar result even though the assessments of high-ability
people are just as noisy as those of low-ability people. (Hint: It will help
to remember that the test-assessed IQ is not a perfect measure of true
intelligence.)

(c) Download "IQdata.csv" and the associated "README.txt," which
describes the variables in this data set, at press.princeton.edu/thinking
-clearly. These are the data used to produce the figure. (We obtained the
data from a 2020 study by Gignac and Zajenkowski.) Let's think about
how we can assess whether high-IQ people really are better at assessing
their own IQs.

i. First, compute the absolute value of the error for each subject
(that is, how far offwere their self-assessed IQs from their test-
assessed IQs?).

ii. Now, regress this absolute error on the test-assessed IQ and
interpret the results.

(d) As you can see in the figure, people tend to over-estimate their own
IQs.

i. Estimate the average extent of this bias in this data.
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ii. Subtract this estimate of the average bias from everyone's self-
assessed IQ to get a bias-corrected self-assessment.

iii. Using this bias-corrected self-assessment, recompute the
absolute value of the errors—that is, calculate how far off, on
average, a persons bias-corrected self-assessment is from their
test-assessed IQ.

iv. Finally, regress this new measure of error on the test-assessed IQ
and interpret the results.

(e) Provide your final assessment of the Dunning-Kruger hypothesis on
the basis of this data. Are high-intelligence people better at assessing
their own intelligence?

S.5 Find a recent example where an analyst failed to consider mean reversion
when they should have. Specifically, look for evidence that is presented in favor
of a particular theory or phenomenon that could also easily be explained by
mean reversion. Your example might come from a newspaper article, an aca-
demic study, a policy memo, or a statement by a politician, business leader, or
sports commentator. Summarize the claim being made by the analyst and the
evidence that purportedly supports the claim. Explain why the data is equally
consistent with mean reversion. As a bonus, think about ways that you could
potentially adjudicate between the analyst s claim and mean reversion.
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CHAPTER 9

Why Correlation Doesn't Imply Causation

What You'll Learn

• Correlation does not necessarily imply causation.
• There are two key reasons why an observed correlation might be a biased

estimate of a causal relationship: confounders and reverse causation.
• Ifwe think clearly, we can sometimes sign this bias.
• There is an important distinction between confounders and mechanisms.

Introduction

As we discussed in chapters 2 and 3, information about correlations and information
about causal relationships are useful for different purposes. Knowledge of correlations,
on its own, can help us describe the world and forecast the presence of certain features
of the world on the basis of the presence of other features of the world. Knowledge of
causal relationships is particularly valuable for decision making because it can tell us
how the actions we take will affect the world. Remember our definition of causation

from chapter 3. A causal effect is a change in some feature of the world that would result
from a change to some other feature of the world.

So when we say that some action has a causal effect on some outcome, we re asserting
that the outcome would be different in a counterfactual world in which the action was

different. Knowing the effects ofour actions allows us to anticipate and weigh their costs
and benefits.

From a pragmatic perspective, this distinction is why the maxim "Correlation doesn't
imply causation" is so important. If we mistakenly take knowledge of a correlation as
implying knowledge ofa causal relationship, we might end up making big mistakes, tak-
ing actions because of a misguided belief about how those actions will affect outcomes
we care about. In this chapter, we are going to learn to think clearly about the difference
between correlation and causation, discuss the sources of bias that can make correla-
tions unreliable estimates of causal effects, and start considering what that means for
how we learn about causal effects.

To give you a sense ofhow important this topic is, let s talk through an example where
high-stakes decisions are being made about how to deploy resources and where we can
disentangle correlation from causation with some confidence. The example concerns
the topic of charter schools in the United States.



Chapter 9

Charter Schools

In his heart-rending movie Waitingfor Superman, David Guggenheim tells the story
of several young children from poor families. In each case, a child is enrolled in a sub-
standard public school. And, in each case, the parents are working hard to get their child
into a charter school (or, in some cases, a magnet school).

Charter schools are operated at public expense but independently of the public
school system. Some charter schools are run by not-for-profit organizations and others
by for-profit corporations. The idea behind the charter school movement is to encour-
age innovation and choice. Charter schools are free from some of the constraints (e.g.,
union contracts, legacy curricula) that public schools face. Hence, the argument goes,
they can innovate in curriculum, teacher incentives, and the like in ways that regu-
lar public schools cannot. And, because they have to compete for students, they will
be motivated to come up with new and potentially better approaches to education.
Whether charter schools in fact succeed in improving educational outcomes is a matter
of heated debate.

In many areas, there are more kids applying to attend charter schools than can be
accommodated. By law, when a charter school is oversubscribed it must admit students
by random lottery. Families apply to the school, and after that, luck determines which
kids get the coveted spots. As the movie powerfully illustrates, the odds are stacked
against the children. Some of the charter schools have hundreds of applicants for a
couple dozen spots.

During the course of the movie we are told a slew of facts about the performance of
the charter schools to which the students are seeking admission. Compared to public
schools with socioeconomically similar populations of students, these charter schools
have better test scores, higher graduation rates, less crime, and so on. Indeed, the charter
schools featured in the movie perform much better than public schools with respect to
virtually every measurable outcome.

As the movie ends, we discover that few of the students we've been following were
admitted to the school of their choice. Instead, theywill be enrolled in "failure factories"
where, we are left to believe, in all likelihood, their potential will be wasted.

But is this the right inference? Does getting into a charter school really improve a
child's educational outcomes? There is more at stake here than our feelings about the
kids in the movie. Over the past several decades, charter schools have emerged as one
of the dominant approaches to school reform in the United States. Expansion ofcharter
schools as an alternative to traditional public schools has received bipartisan support—
it was, for instance, pushed aggressively by both the Bush and Obama administrations.
The share of public school students attending charter schools has risen from less than
1 percent in 1999 to more than 6 percent in 2021. But critics raise concerns about the
possibility that this expansion has led to a decline in resources available to traditional
public schools, perhaps harming the students enrolled in those schools. So wed really
like to know whether charter schools have a positive effect on academic outcomes for
students.

Here's what we know. There is definitely a correlation between charter school atten-
dance and academic performance. Within a city, on average, low-income students who
go to charter schools have better educational outcomes than low-income students who
go to traditional public schools.

As an example, consider the Preuss School, a charter school created by the Univer-
sity of California at San Diego. The Preuss School serves low-income middle and high
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Figure 9.1. Standardized test scores at Preuss School and San Diego City Schools (SDCS).

school students from all over San Diego County. By all accounts, it is a remarkable
school, sending almost 100 percent of its students, who typically come from families
with no history of college attendance, on to higher education. The school has garnered
praise from many sources, including Newsweek magazine, which named Preuss the "top
transformative high school" in the country multiple times.

And, indeed, it is certainly the case that students at the Preuss School perform much
better than their peers at the San Diego public schools. For instance, look at the data in
figure 9.1, showing the difference in the percentage of students who pass standardized
tests in math and English at Preuss versus the San Diego City Schools (SDCS).

Just like in the stories from Waitingfor Superman, from these data, it sure looks like
the Preuss School is having a huge impact on the academic performance of its students.

But before we jump to conclusions, lets think about this a little more clearly. These
data show a positive correlation between going to Preuss and academic performance.
But does the fact that students going to Preuss (or other charter schools) perform better
academically than students at public schools imply that going to a charter school is
causing them to perform better? That is, in the counterfactual world in which some
other kids go to Preuss and these kids go to the public schools, would those other kids
perform better academically and the current Preuss students perform worse? Does the
correlation imply causation? That's what we need to know ifwe are going to figure out
whether investing resources in charter schools is a good decision.

Of course, it could well be that charter schools are genuinely causing students to
perform better, meaning that in the counterfactual world where the charter school stu-
dents had attended regular public schools, they would have performed worse and their
replacements from the public school would have performed better. But another possible
explanation, as Waitingfor Superman so eloquently illustrates, is that the students and
families who choose charter schools are themselves different from the average public
school student in important ways. That is, perhaps the explanation for the correlation
isn't a better school, but better students. If that is the case, then, in the counterfactual
world in which these better students had not gone to a charter school, can we be so sure
that they wouldn't still have outperformed their peers?

Ask yourself, Under what circumstances are economically disadvantaged parents
likely to sign up their child for the lottery to get into a charter school? Two circum-
stances occur to us. First, if the parents believe their child is particularly talented, they

OJ0
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might be particularly motivated to get their child into a school with a good reputation.
Second, if the parents themselves are particularly invested in their child's education,
they might be more likely to do the work necessary to get that child into the lottery.

Natural talent and parental involvement are themselves pretty important deter-
minants of student achievement. Suppose that the pool of students in the charter
school lotteries (and, hence, at those schools) are, on average, more talented and
come from families more interested in education than the population at large. Then,
even if the charter schools themselves have no effect on the performance of their stu-
dents, those students would nonetheless outperform the general population simply by
virtue of their greater ability and more supportive family. Put differently, if all children
went to the exact same school, the children who are currently at the charter schools
would still be above average because they are more talented and have more dedicated
parents.

Remember the question we care about: Can sending a child to a charter school be
expected to improve the performance of that child relative to what they would have
achieved at their local public school? The discussion above shows that we can t know the
answer to this crucial question by comparing the performance of students currently in
charter schools versus traditional public schools. Wed be comparing a group ofparticu-
larly talented, ambitious kids from highly dedicated families to the general population.
How would we know whether differences between these groups arose because of the
effects of charter schools, because of underlying differences between groups, or both?
In simpler terms, wed be comparing apples to oranges.

To determine whether the charter schools are actually a cause of their students'
excellent outcomes, we need to make a comparison that comes closer to capturing the
counterfactual nature ofcausality. To do this, we need a way to compare apples to apples.
The ideal question we'd like to answer is something like this: If everything else about
two children were identical, would the child who went to the charter school do better
than the child who went elsewhere? We obviously can t answer this question. But we can
get closer by trying to answer something like this: If everything else about two groups
of children was identical on average, would the kids who went to charter schools do
better on average than kids who went to public schools?

To take a shot at this latter question, we have to move beyond just comparing charter
school kids to all other public school kids. We do so by narrowing our focus to just
the children who tried to get into charter schools. All of those children were promising
enough or had families dedicated enough to apply to a charter school. But, as a result of
the admissions lottery, some lucky students got into the charter school and others did
not. Since the lottery was random, the pool of lottery winners and the pool of lottery
losers should have the same characteristics, on average (that is, if we ran the lottery
over and over again, the kids winning the lottery would be no more or less motivated
or talented than those who lost). So we can learn a lot more about the actual effect
of attending a charter school by comparing the academic performance of those who
entered and won the admissions lottery to those who entered but lost the lottery. If the
positive correlation between charter school attendance and academic performance is
still there in this narrower comparison, we will feel much more secure in giving it a
causal interpretation because now we re comparing apples to apples.

This comparison has been done for many charter schools. Lets start by looking at
what happens when you make that comparison for the Preuss School. We dont have
data on this comparison for the same standardized test as in figure 9.1, but we do for
another important standardized test, shown in figure 9.2.
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Figure 9.2. Comparing standardized test scores of kids who did and did not win the Preuss School
admission lottery.

This comparison demonstrates the importance of comparing apples to apples. Yes,
the students at the Preuss School tend to outperform the students in the San Diego City
Schools as a whole. But when lottery-winning students are compared to lottery-losing
students, the correlation disappears—there is no performance difference.

Similar findings emerge from studies of many other charter schools. To be sure, dif-
ferent studies find different things. Researchers in Boston find that kids admitted to
charter schools run by the Knowledge is Power Program do better than kids who applied
to but lost the lottery. But our sense is that the following, from another study of school
choice programs in San Diego, is more typical of the literature:

In the vast majority of cases, we found no evidence that winners and losers of a
given lottery fared differently in these achievement tests one to three years after
the admissions lottery was conducted. We interpret this to mean that winning a
lottery neither helps nor hurts achievement growth.

Think about what this means. When we make an apples-to-apples comparison, the
high-performing charter schools appear to have little to no effect on student perfor-
mance. Most ofthe apparent effects ofthese schools come from the fact that the students
who enter the charter school lotteries are already academically different from the aver-
age student. Those students would have done better than average anyway. Separating
correlation from causation in this way may change your views about how we should
spend education resources.

Thinking Clearly about Potential Outcomes
When can a correlation between two variables be plausibly interpreted as compelling

evidence of a causal relationship? We just saw an example ofhow we might mistakenly
think a correlation indicates causation and how it can really matter for decision making.
But lets try to be a bit more systematic about why correlations aren't always evidence
for causation, so we can think more clearly about when we do and don t have a credible
estimate of a causal relationship.

Remember, we define causal relationships counterfactually In chapter 3, we intro-
duced the notion of potential outcomes, which helps us think more clearly about such
counterfactuals.
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Lets suppose were trying to estimate the effect of going to a charter school on aca-
demic performance, as measured by standardized test scores. So the outcome of interest
is standardized test scores, and the treatment of interest is attending the charter school.

Represent the outcome, standardized test scores, with Y. And represent the treat-
ment, going to the charter school, with a binary variable T. If T = 1 for some individual,
that means they attended the charter school. If T = 0 for some individual, that means
they attended a public school. We sometimes say that a unit with T = 1 is treated and
a unit with T = 0 is untreated, although its often arbitrary which groups are labeled
treated versus untreated (e.g., we could similarly talk about the effect of attending
traditional public schools versus charter schools).

In a metaphysical sense, for each individual there is some standardized test score that
they would have gotten had they gone to the charter school and some standardized test
score that they would have gotten had they not gone to the charter school. However,
we only ever get to observe one of these. Nonetheless, having notation for each of these
potential outcomes helps us think clearly about counterfactuals:

Yu = outcome for unit i if T = 1

Yoi = outcome for unit i if T = 0

Using this notation, the effect ofgoing to the charter school on person is test scores is

Effect of Charter School on is Test Scores = Yu — Yo/-

We say that causality is about counterfactual comparisons because we can only
observe, at most, one of the two quantities—Yu or Yq/—for any individual at a par-
ticular point in time. This means that we can t directly measure the effect of going to
the charter school on an individual.

Maybe we can instead hope to estimate the average effect ofgoing to a charter school
across a bunch of individuals in some population of interest. For whatever population
we are interested in, let's define notation for the average test score ifeveryone went to the
charter school and the average test score ifeveryone went to the public school as follows:

Y\ = average outcome if all units had T = 1

Yo = average outcome if all units had T = 0

With this notation, we can now think about the average treatment effect (ATE):

ATE = ?i-70

Of course, we cant directly observe this average effect any more than we can observe
the effect of charter schools on an individual. We never see all units both treated and

untreated. Indeed, at any given time, each unit is only one or the other. But we can try
to estimate the ATE.

A first thing we might do to try to estimate the average treatment effect is simply look
at the correlation—comparing the average test scores of students who go to the char-
ter school (treated) to the average test scores of students who go to the public schools
(untreated).
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Start by thinking of our population as divided into two groups, those who went to
charter schools (T) and those who went to public schools (U). Denote the average test
scores in each of these groups by

Yyt = average outcome among units with T = 1

You = average outcome among units with T = 0.

We will refer to the difference in the average test scores between these two groups as
the population difference in means. (Remember that mean is usually just another word
for average, and in the context of this book, the two terms are used interchangeably.) It
is just

Population Difference in Means = Yyt ~ Yqu-
Ofcourse, we might not observe the whole population; we might observe just a sam-

ple. For instance, perhaps we only observe the students from one particular charter
school. So the difference in average test scores that we observe in our sample is equal
to the difference in average test scores among students who go to charter and public
schools in the whole population plus some noise. So, we have

Sample Difference in Means = Yyt ~ You + Noise,
Population Difference in Means

which is just a measure of the correlation between standardized test scores and attend-
ing a charter school in our sample.

Of course, we want to know the average effect of going to the charter school, not
just the correlation. To start thinking about the difference between these, it helps to
introduce two more concepts—the average treatment effect on the treated (ATT) and
the average treatment effect on the untreated (ATU). The ATT is the average effect of
going to the charter school among those students who in fact went to the charter school.
That is,

ATT=YlT-Yor.

And the ATU is the average effect of going to the charter school among those students
who in fact went to the public schools. That is,

ATU = YIU-Y0U.

Notice two things. First, the ATE is just a weighted average of the ATT and the
ATU, where the weights depend on how many kids are in each group.1 Second, just
like the ATE, the ATT and ATU are both fundamentally unobservable. We don't
observe the test scores that students who go to the charter school would have made
had they gone to the public schools (Yqt)- And we don't observe the test scores

1A weighted average is just an average where we put different weights on different items. For example, suppose
75 percent of the population is treated and 25 percent of the population is untreated; then the ATE is the weighted
average of the ATT and the ATU with 75 percent of the weight on the ATT. That is,

75-ATT + 25-ATU
ATE= =.75-ATT+ .25-ATU

75 + 25
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students_who go to the public schools would have made had they gone to the charter
school (Yiu).

Okay, now that we have all that notation, we should be able to think clearly about
the difference between correlation and causation. To start doing so, lets compare the
difference in means that we in fact observe (which is our measure of the correlation)
to the ATT—the effect of going to charter schools among students who went to charter
schools. This will help us build some intuition that we will then be able to apply to
thinking about the comparison of the difference in means to the ATU and, ultimately,
the ATE.

We are going to want to get back to working with our favorite equation:

Estimate = Estimand + Bias + Noise

That is, we want to find a way to write

Sample Difference in Means = ATT + Bias + Noise.

How do we do this?

Let s start by remembering, from above, that

Sample Difference in Means = Yyy — Y$u + Noise.
Population Difference in Means

Now, we are going to cleverly rewrite the population difference in means by adding and
subtracting Yqj~ from it. We know that seems weird. But, trust us, its going to help.
And, for now, it should at least be clear that we aren t doing any harm since, by adding
and subtracting the same term, we are really just adding zero. Anyway, when we do that,
we get

ATT BiasATT

Sample Difference in Means = Yyj — Yot + Yot — You + Noise,

where we ve subscripted Bias with ATT to indicate that this is the bias we get when using
the difference in means to estimate the ATT.

Our algebraic trick was actually pretty cool, right? By adding and subtracting the
same term, we were able to write things in terms of our favorite equation. The sample
difference in means (estimate) is equal to the ATT (estimand) plus a bias term plus
noise!

But what exactly does that bias term say? If we are trying to estimate the effect of
going to a charter school, our comparison of test scores among students who did and
did not go to the charter school is biased ifwe expect that those two groups of students
would have made different average scores on their standardizedtests even in the coun-
terfactual world where they all went to the public schools (i.e., Yot — You 7^ 0). When
this is the case, we say the two groups have baseline differences.

So far, we ve seen how the difference in mean test scores between charter public
school students might be a biased estimate of the true effect of charter school atten-
dance on those students who attend charter schools (the ATT). We could do a similar
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analysis for the effect of charter school attendance on those students who attend public
schools (the ATU):

ATU BiasAiu

Sample Difference in Means = Y\u — Yqu + YiT ~ Y\u + Noise

Here we find a similar bias, but now the baseline differences we are worried about
have to do with differential outcomes between the treated and untreated groups ifboth
groups were to receive treatment (i.e., Yyj — Y\u ^ 0). Since the overall average treat-
ment effect (ATE) is itself just a weighted average of the ATT and the ATU, the bias
associated with using the difference in means to estimate the ATE comes from both of
these kinds of baseline differences.

Thinkback to the difference in academic performance between students at the Preuss
School (treated) and the students at the San Diego City Schools (untreated). We were
concerned that the relationship might not be causal because, say, the students at Preuss
were more academically talented, on average, than the students at the San Diego City
Schools. If the Preuss students are in fact more academically talented, then there are
baseline differences between the two groups of students—a difference in academic per-
formance would exist between the treated and untreated students even if all students

in both groups attended the same school (i.e., Yqt — You > 0 and Yyr — Y\u > 0).
Because this comparison is so clearly not apples-to-apples, we cant be certain that
the difference in average performance between the two groups is evidence of an effect
of the Preuss School. Even if the ATE was zero, we would still expect to find a posi-
tive difference in means. This is exactly what it means to say correlation doesn't imply
causation.

The lottery was convincing evidence precisely because it randomized people into
treated and untreated. Randomization guarantees that, on average, the two groups are
the same with respect to potential outcomes. That is, ifwe ran the randomization over
and over again, on average the two groups would have the same baseline outcomes. (Of
course, for any one run ofthe randomization, there could still be non-causal differences
in academic performance between the two groups, just because ofsampling variation or
other kinds of noise.) Hence, a difference in average outcomes between lottery winners
and lottery losers is an unbiased estimate of the causal effect of the school.

When talking about causality, we often use language that evokes experiments, as we
have here by discussing treatment. We do so because experiments provide a clear way
to think about inferring causality from a correlation. If there is experimental random-
ization into treatment, then there are no systematic baseline differences between the
treated and untreated groups.

Importantly, though, in many circumstances where we are interested in causality,
we don t actually get to run an experiment. Instead, some people get the treatment and
others do not, for reasons that we are not in charge of. In those circumstances, we have to
be very careful about interpreting a correlation between outcome and treatment status
as an estimate ofthe causal relationship. As we saw, the positive correlation between test
scores (outcome) and going to the Preuss School (treatment) in the overall population
was not in fact indicative of a causal relationship. The reason is because, out there in
the world, social processes gave rise to baseline differences between the treated and
untreated groups.
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Sources of Bias

To take the proper care in interpreting correlations, we need to be able to think clearly
about when there will be systematic baseline differences, because it is these baseline
differences that give rise to bias. There are two main sources of such differences: con-
founders and reverse causality. Understanding these is a big step toward being able to
think about when you can and cannot learn something credible about causality from a
correlation.

Confounders

A confounder is a feature of the world that satisfies two conditions:

1. It has an effect on treatment status.
2. It has an effect on the outcome over and above the effect it has through its effect

on treatment status.

Confounders create baseline differences and, thus, bias. Suppose some feature of the
world makes people more likely to receive treatment. And suppose it also makes people
more likely to have a particular outcome. Then, because of the confounder, there will
be a correlation between that outcome and treatment, for reasons separate from any
actual effect of the treatment. Hence, if there are such confounders (and we haven t
done anything to account for them, which we will discuss in coming chapters), then
it is a mistake to interpret a correlation between an outcome and a treatment as an
unbiased estimate of the causal effect of the treatment.

To be a little more concrete, remember our concern that the correlation between
going to the Preuss School and academic achievement was not convincing evidence of
a causal relationship. That concern was about baseline differences that resulted from
more academically talented kids being more likely to seek out (or have families that
seek out) the Preuss School. Another way of expressing that same concern is that the
underlying academic talent of a kid is a confounder. Academic talent has an effect on
treatment status—kids who are more academically talented are more likely to be in the
treatment group (i.e., go to Preuss). And academic talent has an effect on outcomes over
and above the effect it has through its effect on treatment status—more academically
gifted kids are going to do better on tests for reasons over and above the fact that they
seek out better schools. Looking at the lottery winners and losers helped to tease out
causality because it broke the link between talent (the confounder) and going to Preuss
(the treatment).

Consider one further example. Many studies show a strong negative correlation bet-
ween a country's economic productivity and whether it experiences civil war. There are
reasons to think that there could be a causal relationship underlying that correlation—
for instance, perhaps when the economy is doing better, people have better lives and,
thus, are less likely to be willing to mobilize to fight. But before interpreting the correla-
tion as causal, one needs to think about whether there are potential confounders. One
confounder you might worry about has to do with politics. A democratic political sys-
tem, by incentivizing the government to adopt better public policy, is likely to positively
affect a country's economy. Moreover, by giving people a non-violent means to express
various grievances, democracy may also directly reduce the risk of civil war. Hence,
democracy is a potential confounder. And, so, we are not justified in interpreting the
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Figure 9.3. Confounders have an effect on treatment status and an independent effect on outcome.

correlation between economic prosperity and civil war risk as an unbiased estimate of
the causal relationship.

So the first step in assessing whether a correlation is evidence of a causal relationship
is to ask yourselfwhether there are any confounders. The schematic picture in figure 9.3
might help you remember to do so. The question the figure asks is, For any given treat-
ment and outcome, are there any factors that you suspect belong in the confounders
box? To fit in the box, two things must be true. First, the arrow from confounder to
treatment has to make sense—that is, you must believe the confounder might exert an
effect on the treatment. And second, the arrow from the confounder to outcome has to
make sense—that is, you must believe the confounder might exert an effect on the out-
come that doesn't run through the treatment. If you can fill in factors that satisfy both
these conditions, then you have a reasonable concern about confounders and should be
wary of giving a causal interpretation to the correlation between treatment status and
outcome.

Reverse Causality
The second source ofbias we need to worry about is reverse causality. There is reverse

causality if the outcome affects treatment status. Reverse causality creates baseline dif-
ferences because, if an outcome affects whether or not a unit receives treatment, there
will be systematic differences in outcomes between the treated and untreated groups
that are not due to the effect of the treatment.

Consider, again, our example of the negative correlation between the state of a
country's economy and civil war. We ve already seen that there could be confounders
underlying this relationship. But there might also be reverse causality. For instance, dur-
ing the course offighting a civil war, infrastructure is destroyed, production is disrupted,
and people are killed. All of these effects of civil war directly reduce economic prosper-
ity. Hence, a negative correlation between a measure of economic prosperity and civil
war might reflect the effect of war on the economy, rather than the effect of the econ-
omy on war. The potential for such reverse causality is yet another reason that a causal
interpretation of this correlation is not justified.

The schematic picture in figure 9.4 is a way ofhelping to remind yourself to check for
reverse causality before interpreting a correlation as causal. The question the figure asks
is, For any given treatment and outcome, are there potential sources ofreverse causality?
That is, can we think of reasons that a causal arrow might run from the outcome to
the treatment? If so, then you have a legitimate concern about reverse causality and
should be wary of giving a causal interpretation to the correlation between treatment
and outcome.
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Reverse causality

Figure 9.4. Reverse causality is when the outcome affects treatment status.

Reverse causality

Figure 9.5. Confounders and reverse causality—two key sources ofbias for estimating causal relationships.

In general, if someone shows you a correlation between an outcome of interest and a
treatment of interest, without some additional information and investigation, you might
have no way ofknowing whether that correlation arose because the treatment affects the
outcome, the outcome affects the treatment, confounders affect both the treatment and
the outcome, or some combination of all of these possibilities.

Figure 9.5 provides an overall schematic for thinking about the two sources of bias
we've discussed. Now that we've got the conceptual material summarized in figure 9.5
firmly in hand, let's get some practice thinking clearly about correlation versus causa-
tion, confounders, and reverse causality by talking through a couple examples in some
detail.

The 10,000-Hour Rule, Revisited

You probably don't know the name Dan McGlaughlin, but he got quite a bit of press
back in 2010. In April ofthat year, McGlaughlin quit his job as a photographer to pursue
the dream of playing professional golf. He planned to practice golf for at least thirty
hours every week for more than six years, until he had put in 10,000 hours of deliberate
practice. He believed that by the end of those 10,000 hours he would be an expert golfer,
ready to qualify for the PGA Tour. It hasn't quite worked out as McGlaughlin planned.
He didn't make the PGA Tour but did open what appears to be a pretty cool artisanal
soda company.
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McGlaughlins quixotic plan should sound familiar. He took Malcolm Gladwells
10,000-hour rule, which we discussed back in chapter 4, to its (il)logical extreme. Tal-
ent, the argument goes, is secondary; great success is all about putting in those 10,000
hours. So any of us can achieve virtually anything, even a career in professional sports,
ifwe just commit ourselves to 10,000 hours of really serious practice.

As we've already discussed, Gladwells evidence for the 10,000-hour rule—even
just as a statement about a correlation—is dubious because of lack of variation. But
McGlaughlin did not hang his hat entirely on this evidence. He was also inspired by
research done by the psychologist K. Anders Ericsson of Florida State University.

Ericsson argues that the key to super-high performance at anything is deliberate
practice. Once a certain level of expertise has been achieved at some task, he claims,
peoples performance tends to plateau even if they keep gaining experience or gen-
eral practice. The only way to continue improving at that point is through deliberate
practice—working on exercises specifically targeted to particular aspects of perfor-
mance. The more deliberate the practice is, the better the performance will be. What
distinguishes true masters ofan activity from good, but not great, experts, is the amount
of time devoted to deliberate practice.

The 10,000-hour idea derives from a seminal study of expert musicians by Ericsson
and collaborators. Unlike Gladwell, Ericsson does have variation. He studied violin stu-
dents at an elite music school in Berlin. All of the students in the study were expert
violinists. But they could nonetheless be distinguished in terms of quality. Ericsson
asked the faculty to identify three groups—the very best violinists who were likely to
go on to careers as soloists or in major orchestras, good violinists who were less likely
to have successful performance careers, and the weakest group ofviolinists, who would
likely become teachers. (We are trying not to take offense.)

The violinists were interviewed about their history of practice—age at which they
started, hours per week, the type of activities they engaged in during practice, level of
concentration, and so on. They were also asked to keep diaries recording their prac-
tice habits. Armed with this information, the researchers were able to compare the
practice behaviors of the different groups of violinists. The finding: The best violin-
ists had practiced at least 10,000 hours by the time they were eighteen, while the less
accomplished violinists in the second group had only practiced about 7,500 hours, and
the future teachers in the third group had practiced only about 5,000 hours. More-
over, the best violinists were distinguished by spending a greater share of their practice
time deliberately. For example, they spent more time on difficult tasks designed to
improve performance rather than simply playing enjoyable pieces that they had already
mastered. Similar studies report analogous findings for chess players, athletes, and
others. So the data show a positive correlation between deliberate practice and high
performance.

Given this evidence, it looks like both the 10,000-hour rule and the focus on delib-
erate practice might not be so far-fetched. The highest-performing experts, in an array
of fields, don t seem to be distinguished by measurable physical characteristics. The key
appears to be that the best performers are those who practice the longest number of
hours and in the most focused way. So maybe practicing deliberately for 10,000 hours
really can make you world-class. Maybe Dan McGlaughlin had a pretty good shot at
becoming the next Tiger Woods.

But before you stop reading to go become a professional golfer, let s think a bit more.
Ericsson didnt make Gladwells mistake. He had variation and so established a correla-
tion between deliberate practice and achievement. But that doesn't mean the correlation
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reflects a causal effect. To reach that conclusion, we need to think about confounders
and reverse causality.

Here's one possible concern. Suppose innate natural talent really is important. Imag-
ine two kids, both of whom love to play the violin. One kid is more innately talented
than the other. They both practice hard, putting in many hours. The hard work pays
off and both progress rapidly. But over time the talent differential starts to manifest
itself. The more talented kid masters difficult pieces of music more quickly and with
greater precision. She receives more accolades and performance opportunities than the
less talented kid.

Time progresses and the two kids become teenagers. New opportunities and
distractions—dating, sports—arise. Each teen has to decide how much time and energy
to continue to devote to violin practice. The more talented of the two teens finds that
every time she devotes a day to violin, she masters new skills and repertoire. This
progress and achievement is inspiring. It creates a positive feedback loop whereby prac-
tice leads to success, which inspires further practice and greater focus. So she continues
to devote herself to deliberate violin practice, achieving those magic 10,000 hours by
the time she is eighteen.

The less talented of the two teens also progresses each time he devotes a day to the
violin, but he does so more slowly and with less proficiency. A piece that takes the more
talented teen a week to master might take him a month. Even then, he plays it with less
technical accuracy and musicality. His achievements are slower to come and met with
fewer accolades. This lack of progress is frustrating. Met with less positive feedback, he
finds practicing less rewarding. As a result, he still loves and continues to work hard
at violin, but as new opportunities come up, he is more likely to take a few hours or a
day off ofviolin practice to pursue them. And even while practicing, perhaps he is less
focused because he has other things to think about. By the time he is eighteen, he's put
in only three-quarters as much practice time as his more talented friend, and less of it
is deliberate.

Two young people like those we've just described could easily have ended up music
school classmates in Ericsson's study. The more talented of the two would have been
identified by the faculty as one of the best violinists, while the less talented would have
been identified as good but not great. Comparing them, Ericsson would have found, as
he did, that the stronger of the two violinists put in 10,000 hours of deliberate practice,
while the weaker put in only about 7,500 hours of less deliberate practice.

From this comparison, Ericsson concludes that practice caused the difference in their
success. But as we've seen, this causal interpretation of the correlation is not warranted.
As highlighted in figure 9.6, innate talent could well be a confounder—affecting the
amount of deliberate practice (treatment) and having a direct effect on performance
(outcome) over and above its effect through practice. Differences in talent cause baseline
differences in achievement.

Of course, in the story we told, it's not as if practice has no effect. Success is surely
influenced by talent, practice, and the combination of the two (the most innately gifted
person in the world could not become a great violinist without practice). But in our
hypothetical example, the more talented student would likely still be a better violinist
than her classmate even if she had only practiced for 7,500 hours, and the less talented
student would still be worse than his classmate even if he had forced himself to practice
for 10,000 hours.

The extent to which the correlation reflects a causal relationship versus the bias from
a talent differential is important here. To see why, think back to Dan McGlaughlin.
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Figure 9.6. Is the correlation between deliberate practice and performance an unbiased estimate of the
causal relationship?

Before quitting his job, McGlaughlin hadn't shown any of the signs of a world-class
golfer. That fact might help explain why he hadn t previously put in thousands ofhours
of deliberate practice. If a significant portion of the correlation between practice and
success is due to both of them being affected by innate talent rather than being the
causal effect of practice, then McGlaughlin's efforts were unlikely to yield the desired
outcome. Profoundly talented people practice a lot and have great success. That doesn't
mean that a person who lacks profound talent but forces himself to practice a lot will
find that same success. And so, perhaps, he should have anticipated that his journey
would end as it did, in an artisanal soda company rather than a PGA Tour card. (For
what it is worth, Ethan thinks running an artisanal soda company sounds way more fun
than playing professional golf. Anthony disagrees.)

Diet Soda

Speaking of fizzy beverages, at the time of this writing, there is a near consensus
among nutrition experts that diet soda is bad for you. Studies by experts in respected
scientific journals have linked diet soda consumption to a range of health problems
including obesity, diabetes, and heart attacks.

Curiously, despite all of the purportedly hard evidence on the dangers of diet soda,
scientists don t yet have a compelling explanation (aside from the adverse dental con-
sequences of diet soda—acid is bad for your teeth). They have been racking their
brains to explain why beverages with virtually no calories are somehow making people
overweight.

Several theories have been put forward. One explanation is that diet soda has chemi-
cals, which might be bad for us. Ofcourse, everything we consume has chemicals, so this
isn't much of an explanation, and it just kicks the can of soda one more step down the
road. Another explanation is that diet soda confuses your body and makes it somehow
want more calories. After consuming diet soda, the story might go, your brain expects
you to receive some calories from this sweet beverage, and when it doesn't, it urges you
to raid your pantry for cookies and chips. In this way, your brain is like a child who is
told they're about to get some candy only to have it revoked at the last minute. A third
explanation is that diet soda (and presumably anything sweet) desensitizes your taste
buds, meaning that you need to eat more and more sugary foods to get your fix.

We aren't nutritionists, but none of these explanations sounds overwhelmingly com-
pelling to our untrained ears. Indeed, we could have imagined similarly convincing
stories for why the effect should go in the opposite direction. Diet soda might allow
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someone with a sweet tooth to enjoy a refreshing treat without consuming extra
calories. And diet soda might even trick your brain into thinking you ve ingested calo-
ries and therefore speed up metabolism, which could be good for health and weight
management. As we say, were not experts, but it seems at least as plausible that diet
soda is good for health, especially as a substitute for sugary beverages. So why have
experts so strongly agreed that diet soda is bad for your health?

We have scoured the studies, and the extent ofthe evidence seems to be the following.
There is a negative correlation between drinking diet soda and health outcomes. People
who drink diet soda are more likely to be obese, have diabetes, and suffer from a range
ofother health problems than are people who do not drink any kind of sweet beverages.

Before agreeing with the nutritionists that this correlation reflects a genuine causal
effect of diet soda on health, we should think about whether there are confounders or
reverse causality.

What if, for example, snacking makes people more likely to both drink soda (because
the soda goes well with the snacks) and, for reasons unrelated to soda, more likely to be
obese? Then snacking would be a confounder. Or perhaps its reverse causality—what
if obesity or diabetes makes people more likely to drink diet soda? Presumably, if you
like soda and become diabetic, you'll switch to diet soda. Similarly, we ourselves could
imagine switching from diet soda to sugary beverages ifonly we were healthier. Clearly,
confounders and reverse causality are serious concerns, and we should not treat the
correlation between diet soda and health outcomes as a credible estimate of the causal
effect.

How Different Are Confounders and Reverse Causality?
While we are thinking about confounders and reverse causality, it is worth pausing

to reflect on how they relate to one another. Often a problem that appears to be about
reverse causality can also be thought of in terms of confounders, where the relevant
confounder is simply the anticipated outcome.

To see what we mean, think back again to our example of the negative correlation
between the economy and civil war risk. WeVe seen that there are both confounders
and reverse causality that invalidate a causal interpretation of this correlation. Con-
sider one more problem. Suppose that, for a variety of reasons (e.g., lack of democracy,
ethnic divisions, nearby civil wars), people believe some country is at high risk for a
civil war. This risk of civil war might deter investment in the country, lead to capital
flight, cause a brain drain, and so on. In this way, anticipation of a future civil war can
cause the country to have a weaker economy. You could think of this as a case of reverse
causality: civil war risk causes economic weakness. But it may be more clarifying to
think of it as a case of confounding, where the confounders are whatever factors lead
people to believe the country is at high risk of civil war. Those factors cause economic
weakness by deterring investment and causing brain drain. And, presumably, they lead
people to believe the country is at high risk of civil war precisely because they exert an
independent effect on civil war occurring.

Let s consider another example—campaign spending.

Campaign Spending
Political candidates spend huge amounts of time raising money for their campaigns.

Members of Congress, for example, often spend several hours per day in a call center
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phoning wealthy constituents and asking them to help fund their next reelection effort.
(It turns out that being in Congress isn't a particularly glamorous job.)

Ofcourse, politicians do this because they believe that campaign dollars are essential
for their electoral prospects. And campaign consultants constantly advise candidates
about how much they should be spending on television ads, digital ads, direct mail, and
personal voter outreach. Electoral campaigns are clearly a big business predicated on
the notion that candidates can improve their chances ofsuccess by raising and spending
more money.

Given the scale of campaign spending, political scientists have devoted a lot of time
and effort to estimating the returns on these efforts. Can spending on advertising really
influence election results? And are those effects big enough to justify the millions of
dollars donated to finance campaigns and the thousands upon thousands ofhours spent
raising those dollars?

One of the earliest and most influential studies ofcampaign spending was conducted
by Gary Jacobson in 1978. Jacobson concludes that campaign spending seems to sig-
nificantly help challengers' electoral prospects but has little benefit for incumbents.
Indeed, campaign spending by incumbents might even be counterproductive, hurting
their electoral fortunes!

What is Jacobson's evidence for this claim that campaign spending helps challengers
but not incumbents? Challenger spending is strongly positively correlated with chal-
lengers' vote shares. But incumbent spending is negatively correlated with incumbents'
vote shares.

One explanation for these correlations, Jacobson speculates, is that incumbents typ-
ically raise and spend more money than challengers. Maybe some initial amount of
spending at the levels that we typically see for challengers helps a candidate to obtain
name recognition and persuade voters. But perhaps too much spending from an already
well-known incumbent annoys and turns off potential supporters. On this account,
incumbents are making systematic mistakes, both in spending their time raising money
and in spending that money once they've raised it.

Of course, the comparisons underlying these correlations may not be apples-to-
apples. We need to think about confounders and reverse causality.

One big concern along these lines has to do with electoral strength. Which kinds of
challengers tend to be able to raise and spend lots ofmoney? Presumably, popular chal-
lengers with a real shot at victory. It is those electorally strong challengers that donors
are likely to be willing to invest in. But, ofcourse, strong challengers are those who were
expecting to do well in the election even before they raised the money—perhaps they
are charismatic, well-known, or particularly talented. So it would be a mistake to inter-
pret the positive correlation between challenger spending and electoral performance
as purely causal. It, at least in part, reflects baseline differences in electoral strength
between challengers who can and can't raise a lot of money.

The thing we want you to notice in this example is that you can think of the problem
of electoral strength as one of reverse causality or as one of confounding. Thought of
as reverse causality, you might describe it as follows: "When a challenger is going to do
well, she can raise and spend more on her campaign." Thought of as a confounder, you
might describe it as follows: "When a challenger has characteristics that make her com-
petitive, this affects both her ability to raise and spend money and how well she does in
the election." Both sentences describe the same concern, just framed slightly differently.

A similar argument holds for incumbents. In general, although they spend and raise
a lot of money, most incumbents in U.S. elections are electorally pretty safe. The ones
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who really need to exert a lot of effort raising and spending money are those who
are electorally vulnerable. So we might expect exactly the opposite relationship for
incumbents as for challengers. Incumbents spend a lot of money not when they are
strong but when they are weak. And, again, you can view this problem in terms of
reverse causality—"Electorally weak incumbents spend more money"—or in terms of
confounders—"Characteristics that weaken incumbents, making the race competitive,
separately cause them to spend more money and lead to worse than average electoral
outcomes."

Subsequent studies using randomized experiments and other clever approaches to
try to tease out the causal relationship generally suggest that campaign spending does
have positive effects for both challengers and incumbents, although the substantive
size of those estimated effects is typically small. A campaign might have to spend hun-
dreds of dollars to swing a single vote, which means that meaningfully influencing the
outcome of a large election through campaign donations is typically unaffordable. For
example, consider a gubernatorial or senatorial race in a large U.S. state. Even in a race
thought to be very close, the outcome will likely be decided by hundreds of thousands
ofvotes. This means that ifdonors wanted to influence the outcome ofthe election, they
would have to spend tens of millions of dollars and hope that their spending does not
trigger an offsetting response from supporters of the opponent. Because of this, even
the very largest donors have likely swung very few elections.

As you can see, there isn't a ton at stake as to whether we think about such cases as
reverse causality or as confounders. What really matters is that we interrogate correla-
tions for possible baseline differences, whether from confounders or reverse causality,
and if there are baseline differences, that we show proper caution before interpreting a
correlation as implying causation.

Signing the Bias
When there are confounders or reverse causality, the correlation between treatment

and outcome is not an unbiased estimate of the true causal relationship of interest
(whether the ATE, ATT, ATU, or other causal quantities that we 11 discuss in later chap-
ters). But sometimes we can make some progress on learning about causality by asking
whether the correlation over- or under-estimates the causal effect.

Lets think back to our favorite equation, this time written in terms of causal
inference:

Observed Correlation (Estimate) = True Causal Effect (Estimand) + Bias + Noise

Suppose the observed correlation between administering some medical treatment
and survival rates following a stroke is positive. But also suppose there are confounders
that you have not accounted for, so there is bias in your estimate ofthe true causal effect.
If you have reason to believe that the bias is positive, then the observed correlation is
an over-estimate of the true causal effect of the treatment. This means that you cant be
confident, on the basis ofthe observed positive correlation, that the treatment does any-
thing at all. Even ifthe true causal effect is zero, you would observe a positive correlation
on average due entirely to confounders creating positive bias.

But now suppose you have reason to believe that the bias is negative instead of pos-
itive. In this case, the observed correlation is an under-estimate of the true causal effect
of the treatment. So, if you are confident that the observed correlation is positive, you
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should be even more confident that the true causal effect is positive. And this can be
useful to know. For instance, suppose administering the treatment would be a good
idea (given its various costs) even if the true effect was equal to the observed correla-
tion. Then the fact that the observed correlation is an under-estimate of the true effect

suggests that you should administer the treatment.
Note, of course, you could still end up being wrong because of noise. Even if you

are under-estimating the true causal effect, on average, that doesn't mean that any one
estimate is in fact lower than the true effect. It just means that your estimates will be
lower than the true effect on average.

Because this kind of thinking about the sign of the bias in an estimate can some-
times be valuable, it is useful to spend a little time thinking conceptually about when
confounders imply that an observed correlation over-estimates the true effect and when
they imply that an observed correlation under-estimates the true effect.

Start with our discussion of the relationship between votes and the campaign spend-
ing of challengers, where we worried that electoral strength was a confounder. Does
this confounder tend to make the correlation between votes and campaign spending an
over- or under-estimate of the causal effect? It seems likely that electoral strength has a
positive effect on both fundraising and votes for challengers. So some of the extra votes
received by high-spending challengers are actually the result of their electoral strength
rather than an effect ofthe spending. As such, we should expect the correlation between
spending and votes to be an over-estimate of the true effect.

To see another example, lets return to our discussion of the positive correlation
between attending a charter school and standardized test scores. There, we said, one
possible confounder is that students who go to the trouble ofapplying to a charter school
may on average be more academically gifted than the general student population. And
the fact that those students are more academically gifted or motivated may have a direct
effect on their test scores.

If this story is right, does this confounder tend to make the correlation between char-
ter school attendance and standardized test scores an over- or under-estimate ofthe true

effect? Lets think about it. Being academically gifted has a positive effect on the likeli-
hood a student goes to a charter school. And it also has a positive effect on test scores.
That means part of the observed positive relationship between going to a charter school
and test scores is the result of differential academic talent. Hence, this confounder is
pushing the observed correlation to be an over-estimate of the true effect. That is, the
bias in our favorite equation is positive.

It is straightforward that the same would be true if we had a confounder that nega-
tively affected both attending a charter school and test scores. Indeed, this is simply the
same case but with relabeling. Ifwe think ofthe confounder as "lack ofacademic talent"
instead of"academic talent," then that confounder has a negative effect on the treatment
and outcome but still, obviously, leads the observed correlation to be an over-estimate
of the true effect. Thus, as illustrated in figure 9.7, ifyou have a confounder that has the
same sign effect on both treatment and outcome (whether negative or positive), then
failing to account for this confounder will create positive bias. In such circumstances,
the observed correlation will tend to be larger than the true effect.

Now lets think about a confounder that has differently signed effects on treat-
ment and outcome. For instance, suppose students from poor neighborhoods are more
motivated to apply to charter schools (perhaps because their local public schools are
underfunded), but are also expected to do worse academically because of challenges
in their living environment. This, again, is a confounder—it exerts an effect on both
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Figure 9.7. Signing the bias from a confounder.

the treatment (whether or not a student attends a charter school) and the outcome
(performance on standardized tests). But unlike the case of academic talent (which
positively affects the treatment and the potential outcomes), this confounder will create
negative bias. Hence, the observed correlation between charter school attendance and
standardized test scores is an under-estimate, rather than an over-estimate, of the true
effect.

Why is this the case? In our new story, living in a poor neighborhood has a positive
effect on the likelihood a student goes to a charter school. And it has a negative effect on
test scores. That means the observed correlation between going to a charter school and
test scores reflects the fact that the kids at charter schools over-represent poor neigh-
borhoods, relative to the full population. This fact tends to lower test scores for charter
school students for reasons having nothing to do with the effect of the charter school.
If charter schools and public schools had the same proportion of kids from wealthier
and poorer neighborhoods, the positive correlation between charter school attendance
and test scores would be even more positive. Hence, this confounder is pushing the
observed correlation to be an under-estimate of the true effect.

It is again straightforward that the same would be true if we had a confounder that
negatively affected the likelihood of attending a charter school and positively affected
the outcome. Thus, as illustrated in figure 9.7, ifyou have a confounder that has one sign
effect on treatment and the opposite sign effect on outcome, this confounder creates
negative bias. In such circumstances, the observed correlation will tend to be smaller
than the true effect.

Signing the bias is even easier in the case of reverse causality. The outcome is, by
definition, positively related to itself. So, if the outcome also has a positive effect on the
treatment, the bias is positive. This means the observed correlation is an over-estimate
of the true causal effect. And if the outcome has a negative effect on the treatment, the
bias is negative, so the observed correlation is an under-estimate.

In addition to simply signing the bias, if we had a lot more information, we might
be able to say something about the magnitude of the bias. Under some assumptions,
the bias induced by a confounder is simply the effect of the confounder on the outcome
multiplied by a measure of the correlation between the confounder and the treatment
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(measured by the coefficient you would get from regressing the confounder on the
treatment).

As we 11 see in chapter 10, if we have data on this confounder, we can try to remove
this bias by controlling. But ifwe don t have that data, one could still make some guesses
about the extent to which the confounder affects the outcome and is correlated with the

treatment in order to gauge the extent of the bias.
The discussion above illustrates that we can learn something about causal effects

even from biased estimates. It's not as if we have to throw away all our analyses just
because there might be confounders, and if we have good guesses about the direction
and magnitude of the biases, then we might still be able to learn a lot. But often, it's
difficult to know how much an observed correlation is the result of bias, which is why
simple correlations are not our preferred approach for learning about causal relation-
ships. Less naive and more informative approaches to causal inference are the focus of
the subsequent chapters.

A related approach to learning about causal effects from potentially biased correla-
tions is to work in reverse. Instead of inferring how big an effect is by making guesses
about the magnitude of the bias, we can start with the assumption that the true effect
is zero and then ask how big the bias would have to be to explain an observed correla-
tion. If the extent of that bias is implausibly large, then we can conclude that the effect
probably is not zero. This kind of analysis is often referred to as sensitivity analysis. We
won't discuss the details in this book, but as a general rule of thumb, it's good to think
about sources of bias, their likely signs, their likely magnitudes, and what that implies
for the effect you are trying to estimate.

With an understanding of different sources of bias and their likely signs, you can
more deeply understand why correlation is not necessarily evidence ofa causal relation-
ship. The true effect could be zero, but the observed correlation could have emerged
because of confounding or reverse causation. Similarly, as we discussed in chapter 3,
causation need not imply correlation. Even ifsome treatment has a large, positive effect,
confounding or reverse causality could create a large, negative bias. This could lead to
an observed correlation that is small, zero, or even negative (as in the case of campaign
spending and votes for incumbents), despite the positive treatment effect. So, not only
does correlation not necessarily imply causation. Causation does not necessarily imply
correlation.

With all of this in mind, let's think through a more extended example.

Contraception and HIV
One of the greatest public health scourges ofour time is the spread ofHIV and AIDS

in Africa. Researchers have worked hard to determine why these diseases are spreading
so quickly and to try to stem the tide. One hypothesis that has received attention from
scholars and public health officials alike is that the use of hormonal contraception by
women may increase the risk of HIV transmission by inducing changes in the immune
system or body tissue.

In a 2012 study in The Lancet Infectious Diseases, researchers presented evidence
supporting this hypothesis. The researchers analyzed data on more than 3,500 cou-
ples in which one partner was infected with HIV and the other was not. They had
data on a variety of self-reported behaviors—for example, condom use, other sexual
partners—and on whether the woman received hormonal contraception from the clinic
that was conducting the study. The data also reported whether the non-infected partner
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Figure 9.8. Underlying level of sexual activity tends to make the correlation between hormonal contra-
ception use and HIV transmission an over-estimate of the true causal relationship.

contracted HIV over the course of a year or two. Finally, for those partners who did
contract HIV, genetic screening provided information on whether it was transmitted
partner to partner or from some third source.

There were two big findings. First, HIV-negative women who used hormonal con-
traception were twice as likely to acquire HIV from their infected male partners as were
HIV-negative women who did not use hormonal contraception. Second, HIV-infected
women who used hormonal contraception were twice as likely to transmit HIV to their
HIV-negative male partners as were HIV-infected women who did not use hormonal
contraception. These results held true controlling for self-reported condom use. (Well
talk more about what controlling means in the next chapter.) From these findings, the
authors, the New York Times, National Public Radio, and many other sources reported
that hormonal contraception likely increases the risk of HIV transmission.

This studywas a major improvement over existing studies on this critically important
issue. But it was a long way from comparing apples to apples. What might be going
wrong?

The biggest worry is the possibility of confounders—women who take hormonal
contraception are different from women who don t in lots of unmeasured ways, some
of which may also be relevant for HIV transmission risk. If this is the case, then the
observed correlation between hormonal contraception use and HIV transmission may
be a biased estimate of the true causal relationship.

One concern is that women who intend to be more sexually active might also be more
likely to use hormonal contraception. The researchers who authored the Lancet study
were not able to randomly assign some women to take hormonal contraception and
other women not to. Women received hormonal contraception if they wanted it. Sexual
activity is a risk factor for HIV transmission. So, independent of anything else, more
sexually active women are at greater risk of HIV transmission. If the women who are
taking hormonal contraception are systematically engaging in more sexual activity, they
will have higher transmission rates, even if the contraceptives themselves are playing no
direct biological role.

In which direction would this confounder bias the estimates? As highlighted in
figure 9.8, the thought is that sexual activity increases the use of hormonal contracep-
tion and also increases HIV transmission for reasons unrelated to contraception. So
the bias is positive. As such, this confounder tends to make the observed correlation an
over-estimate of the true causal relationship between hormonal contraception and HIV
transmission.

The Lancet authors are aware of these types of concerns and make some attempts to
address them. In particular women were asked about past sexual behavior and condom
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Figure 9.9. The distinction between confounders and mechanisms.

use. But self-reported behavior is notoriously unreliable, especially for sensitive topics
like sexual activity and condom use.

Mechanisms versus Confounders

It is easy to get a little confused about what is and what is not a confounder. One
particularly common error is to mistake the mechanisms by which a treatment affects
an outcome for confounders. A mechanism (sometimes also called a mediator) is some
feature of the world that the treatment affects, which then, in turn, affects the outcome.
So a mechanism, rather than being a confounder, is part of the way that the treatment
has its effect on the outcome.

For instance, one way that a charter school might cause students to get better test
scores than they would if they went to their local public school is by providing more
advanced placement (AP) classes that better prepare students for tests. When looking
at a correlation that says charter school students perform better than public school stu-
dents on standardized tests, it is tempting to say, "Yeah, but that is confounded by the
fact that those charter school students had access to more advanced placement classes."
But this isn't right.

Remember, a confounder is not simply a feature of the world that is correlated with
treatment and outcome (which, in this story, AP classes are). It is a feature of the world
that affects both treatment and outcome. But, in our story, access to AP classes doesn t
affect whether a student goes to a charter school (treatment). Rather, it is affected by
the student going to a charter school and then, in turn, affects the students perfor-
mance on standardized tests. Thus, access to AP classes is not a confounder; it is one of
the mechanisms by which charter schools improve test scores. We sometimes describe
confounders as pre-treatment covariates—that is, variables that were correlated with
treatment and outcome before the treatment occurred—and describe mechanisms as
post-treatment covariates—that is, variables that become correlated with treatment and
outcome after treatment occurs. Figure 9.9 illustrates the distinction (note the direction
of the arrows).

As we say, it is easy to get confused about these issues. So, let s talk through a couple
examples.

Suppose that a medical study of middle-aged men finds that those who take statins
are less likely to die of heart attacks. You note that those men who take statins are on
average wealthier and have lower cholesterol. Which ofthese is a confounder and which
might be a mechanism? Think about it for a moment before we tell you the answer.
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Let's start with wealth. Remember, when assessing whether some feature ofthe world
is a potential confounder, you need to ask whether it could affect both treatment and
outcome. So we ask two questions:

1. Could a mans wealth affect whether he takes statins? Surely the answer is
yes. Wealthier men are, presumably, better able to afford medication and also
probably more likely to see a doctor who would prescribe that medication to
them.

2. Could a mans wealth affect his risk of dying from heart disease? Again, the
answer is yes. Wealthier men might be better able to afford heart-healthy
lifestyles (e.g., joining a gym) and are more likely to get swift access to health
care in the event of a heart attack.

Thus, we should worry that wealth is a confounder here.
What about lower cholesterol? Medical evidence suggests that higher cholesterol

might affect the likelihood of having a heart attack (although its hard to tease out the
causal effect). But does cholesterol affect whether or not a person takes statins? Here,
we might need a little more information—in particular, when exactly the cholesterol
levels were measured.

If cholesterol was measured before the person started taking statins, then it is a good
candidate for a confounder. After all, people typically choose to take statins when they
have high cholesterol. (Using your skills from the previous section on "signing the bias,"
does this confounder make you think the study under- or over-estimates the efficacy of
statins?)

But if cholesterol levels were measured after the person started taking statins, then
it is a mechanism. We suspect that one of the ways that statins might reduce the risk of
heart disease is by lowering cholesterol. If this is true, and ifwe randomly assigned some
people to take statins and others not to, we would expect the ones who took the statins to
have lower cholesterol (and lower risk of heart disease). This difference in cholesterol
levels isn't a problem for inferring the efficacy of statins; rather, it is a mechanism by
which that efficacy is achieved.

Here's another example. Suppose we are interested in whether a good economy helps
reduce the risk of civil war. We find that there is indeed a negative correlation between
per capita income and the frequency with which a country experiences civil war. But
we also note that democracy is positively correlated with per capita income and nega-
tively correlated with civil war risk. Should we think of democracy as a confounder or
a mechanism in this case?

This is a tricky one. You can certainly see how democracy might be a confounder.
Having a democratic form of government might improve the quality of governance.
And good governance might cause a country's economy to grow. Moreover, being a
democracy might give people non-violent ways to resolve political disputes, thereby
directly reducing the risk of civil war. In this story, democracy is a confounder, since it
has a direct causal effect on both treatment (per capita income) and outcome (civil war).

But you can also see how democracy might be a mechanism. Perhaps as countries
become richer, citizens become more informed, better educated, more able to take
actions for their own benefit, and so on. In this way, having a higher per capita income
might directly increase the probability that a country becomes a democracy. And then,
for the reasons already stated, democracy might decrease the risk of civil war. In this
story, rather than being a confounder, democracy is part of the mechanism by which
higher per capita income reduces civil war risk.
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As this example highlights, the distinction between a confounder and a mechanism is
important, but not always cut-and-dry For now, it is important to see the distinction at a
conceptual level, even if in many real-world scenarios you are not always sure whether
some factor is the one or the other. We will return to this theme in the next chapter,
when we talk about the benefits and limitations of controlling.

Thinking Clearly about Bias and Noise
Wed like to pause to make sure you don't forget the lessons from part 2—about

assessing whether a relationship exists—just because we ve now turned our attention to
thinking about causal questions. In this spirit, let's think about the questions you should
ask yourself when someone shows you a correlation and interprets it as an estimate of
some causal relationship.

First, are we actually observing a correlation? Recall from chapter 4 that people often
think they have measured a correlation when they haven t because they didn't collect
data with variation in one of the key variables. So, for instance, you need to make sure
that they didn't just look at instances when the outcome of interest occurred or the
purported treatment was always present. If they made this kind of mistake, you can t
even know from the data presented whether the variables are correlated, let alone related
causally.

Second, does the estimated correlation reflect a genuine relationship in the world?
For example, suppose someone shows you that peanut butter consumption is corre-
lated with appendicitis in a sample of 100 people—within that sample, people who
ate more peanut butter were more likely to get appendicitis. You might ask yourself a
series of questions. Is the correlation statistically distinguishable from the null hypoth-
esis of no correlation? Why do they only have data on 100 people? Did they collect the
data with the goal of measuring this particular correlation? Would they have told you
about this finding if they had found no correlation? If you're worried about p-hacking
or p-screening, then you might be skeptical that there's actually a correlation between
peanut butter and appendicitis in the broader population, and you'd want to collect an
independent sample of data to see if the correlation persists in that new sample. If it
doesn't, you should worry that the true estimand (the correlation in the population) is
zero and that they found a positive correlation in their 100-person sample because of
noise.

Third, is this correlation convincing evidence of a causal relationship? You'd want to
ask whether they're comparing apples to apples—are there confounders or reverse cau-
sation that biases the estimated correlation away from the true causal relationship? For
example, if someone shows you that ice cream consumption is correlated with sunburns
across days of the year, you'd probably believe that they've identified a genuine correla-
tion. Ifthey collected a new sample, they'd probably continue to find a strong correlation
between ice cream and sunburns. But that doesn't mean the correlation constitutes evi-

dence that ice cream causes sunburns. It might. Maybe eating ice cream inspires people
to go outside. But a far more likely explanation is that sunshine increases both ice cream
consumption (for reasons unrelated to sunburns) and sunburns (for reasons unrelated
to ice cream).

To help us put all of this together, let's return to the special case of our favorite
equation when we are doing causal inference:

Observed Correlation (Estimate) = True Causal Effect (Estimand) + Bias + Noise
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Figure 9.10. The strong correlation over time between suicides by hanging and government spending on
science.

There are two kinds of ways an estimated correlation can deviate from the causal
effect of interest. First, there could be noise. Noise here refers to idiosyncratic factors
that affect our estimate. This could come from sampling variation in cases where you
care about a population but you only have data on a sample ofthe whole. Or noise could
come from other idiosyncratic variation in your variables of interest that are indepen-
dent ofany kind ofcausal connection (e.g., you might measure the variables with error).
We might think that, since the noise is zero on average, we can just ignore it. But the
fact that the noise is zero on average doesn't mean it is zero in any particular sample.
And furthermore, in the presence ofp-hacking andp-screening, even the average noise
wont be zero. This was the focus of chapter 7. Second, in addition to noise, there could
be bias—that is, confounders or reverse causation that makes the estimate different from
the estimand on average, which is the focus of this chapter.

When confronted with a correlation that is presented as evidence of causation, it
helps to consider all three factors—a true causal effect, bias, and noise—and try to think
through the role each plays in explaining the correlation. Of course, it is often the case
that an estimate reflects some combination of all three.

In some cases, it's tricky to separate bias and noise or even to think about them in a
conceptually clear way. Let's see some examples of this. Tyler Vigen's book Spurious Cor-
relations identifies pairs oftrends over time that happen to correspond with one another,
even though there's no good reason to think that those two trends are causally or logi-
cally connected in any way. The term spurious correlation is certainly apt, although we
tend to avoid it because it doesn't clarify whether the person using the term thinks the
correlation arose because of bias or noise.

Figure 9.10 illustrates one of Vigen's examples. It shows the correlation over time
between suicides by hanging and government spending on science in the United States.
Although it's not presented in a conventional way, this figure shows a positive correla-
tion. If you think of each year as a unit of observation, it's clear that years with more
hanging suicides than usual also have higher-than-average spending on science. In fact,
the correlation coefficient (r) is .992, essentially the strongest correlation one can find
without making up the data.
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Figure 9.11. The quirky correlation over time between sociology doctorates and space launches.
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What's going on here? Is this correlation attributable to a true causal effect of science
spending on suicides, to bias, or to noise? Its theoretically possible, but very unlikely,
that science spending has a large, positive effect on suicide by hanging (or vice versa).
Noise certainly seems like a plausible explanation. Ifyou look at enough variables, you're
bound to find two of them that happen to correspond by chance, and we know that this
is exactly what Vigen did. He checked for correlations over time for many variables and
selectively reported the correlations that were significant.

But maybe it's also bias. What's an example of a confounder here? Could there be
a variable that affects both hanging suicides and also science spending? One poten-
tial confounder is population. Over this period (1999-2009), the U.S. population grew
steadily from about 279 million to 307 million. And population growth could plausibly
increase both suicides and science spending.

To explore whether bias or noise is the more important explanation for the observed
correlation, it might help to think about whether you expect this correlation to also hold
for years before 1999 and after 2009. Ifyou suspect that this correlation would likelyhold
more generally outside this sample of data, then it can't just be noise. Alternatively, if
you think that this correlation is just a fluke, unlikely to hold outside the short period
for which Vigen collected data, then it's just noise, due to neither a causal relationship
nor bias.

Let's take a look at another couple examples. Figure 9.11 shows the correlation over
time between sociology doctorates awarded in the United States and worldwide non-
commercial space launches. Again, there's a strong correlation. Furthermore, it's not
so easy to simply attribute the result to population growth (or something else changing
over time) because the correlation is not driven by the two variables generally increasing
over time. On average, space launches and sociology doctorates aren't increasing or
decreasing, but the years with more space launches also tend to be years with more
sociology doctorates.

We're pretty comfortable chalking this one up to noise. There's idiosyncratic variation
from year to year in space launches and sociology doctorates, and they happened to line
up during this period. But we suspect that ifwe looked at the next thirteen years ofdata,
the correlation would be close to zero.
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Figure 9.12. The metaphysically challenging correlation between Nicolas Cage movies and swimming
pool drownings.

Finally, figure 9.12 shows the correlation over time between the number ofmovies in
which Nicolas Cage starred and swimming pool drownings. This one feels like another
straightforward case of noise. Theres surely no causal connection, and theres also
probably no compelling confounder. And, as with sociology and space launches, we're
willing to bet that this correlation wont continue to hold in future years.

However, the Cage-drowning correlation poses a different conceptual conundrum.
Suppose that this analysis included all ofthe years during which Nicolas Cage was acting
and all of the years during which people had swimming pools (this is obviously not the
case, but just imagine with us). If Nicolas Cage no longer made movies and people no
longer had swimming pools, we couldn't assess the correlation between these two vari-
ables in some future period. So how could we think about whether this correlation was
the result of noise? Furthermore, what would it even mean to say that this correlation
was the result of noise ifwe had all the data there was to have on Nicolas Cage movies
and swimming pool drownings? If you have observed the entire population (here, of
Nicholas Cage movies), there is no sampling variation.

One way to resolve this puzzle is to make the metaphysical leap we discussed back in
chapter 6 when we talked about statistical inference when we have data for the whole
population. Sure, theres an observed correlation between Nicolas Cage movies and
swimming pool drownings in this world, but that's just a small sample of a broader
population of alternative, hypothetical worlds that might have been. Those worlds are
just like our own, but all of the idiosyncratic, unrelated factors happen to play out dif-
ferently. Do we have any reason to expect that Nicolas Cage movies would be correlated
with swimming pool drownings in those worlds? If the answer is no, we might say that
the correlation we observed is just noise, even though we have all the data there is to
have about Nicolas Cage and swimming pool drownings.

Wrapping Up
WeVe seen that a correlation is often a biased estimate ofa causal relationship because

of confounders or reverse causality. This is what we mean when we say that correlation
does not imply causation.



Correlation Doesn't Imply Causation 187

If we know what confounders to look out for, and if we can measure them, can we
correct the bias and obtain a better estimate of the causal relationship? How to do so is
the topic of chapter 10.

Key Terms
• Causal effect: The change in some feature of the world that would result from

a change to some other feature of the world.
• Average Treatment Effect (ATE): The difference in average outcome com-

paring two counterfactual scenarios—one where everyone in the population
is treated and one where everyone in the population is untreated.

• Average Treatment Effect on the Treated (ATT): The difference in average
outcome comparing the scenario where everyone in the subgroup of people
who in fact received treatment is treated and the counterfactual scenario where

everyone in that subgroup is untreated.
• Average Treatment Effect on the Untreated (ATU): The difference in average

outcome comparing the counterfactual scenario where everyone in the sub-
group ofpeople who did not receive treatment is treated and the scenario where
everyone in that subgroup is untreated.

• Difference in means: The difference in average outcome comparing the sub-
group of people who in fact received treatment to the subgroup of people who
in fact did not receive treatment.

• Baseline differences: Differences in the average potential outcome between
two groups (e.g., the treated and untreated groups), even when those two
groups have the same treatment status.

• Confounder: A feature of the world that (1) has an effect on treatment status
and (2) has an effect on the potential outcome over and above the effect it has
through its effect on treatment status.

• Reverse causality: When the outcome affects treatment status.
• Over-estimate: When the bias is positive, so that the estimate is larger than the

true effect in expectation.
• Under-estimate: When the bias is negative, so that the estimate is smaller than

the true effect in expectation.
• Mechanism (or mediator): A feature of the world that the treatment affects,

which then, in turn, affects the outcome.
• Pre-treatment covariate: A variable that is correlated with treatment and

outcome before the treatment occurs.
• Post-treatment covariate: A variable that becomes correlated with treatment

and outcome after treatment occurs.

Exercises

9.1 At the end of our discussion ofviolent and non-violent resistance in chapter 1
we asked you the following:

Why might the fact that there are more government crack-downs follow-
ing violent protests than non-violent protests not mean that switching
from violence to non-violence will reduce the risk of crack-downs?
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We promised that you would be able to give a compelling answer by the end
of this chapter. So, please identify at least one reason why the fact that violent
protests are more often met with a government crack-down than non-violent
protests is not compelling evidence that the use ofviolent protest tactics causes
government crack-downs.

9.2 Lets think about over-estimates and under-estimates in two of our exam-
ples.

(a) In our discussion ofviolin practice, we noted that a musician with
greater talent might both practice more and play the instrument bet-
ter for reasons having nothing to do with how much she practices. Does
this suggest that the correlation between practice and playing quality is
an over-estimate or an under-estimate of the true effect of practice on
playing?

(b) In our discussion of campaign spending, we argued that incumbents
are likely to spend heavily on their campaigns when they are electorally
weak. Does this suggest that the observed lack of (or even negative)
correlation between campaign spending and electoral performance of
incumbents is an over-estimate or an under-estimate of the true effect

of spending on votes?

9.3 Ethan was once at a meeting where he was briefed on the ways in which data
analytics can improve universities' operations. The example the presenter
was most excited about was from a data analytics team in a major research
university's development (which is jargon forfundraising) department. The
data analytics team had discovered the following correlation by analyzing
years of data: alumni who donate to the university six years in a row are way
more likely to be lifelong givers than are alumni who only donate five years in
a row.

The presenter was excited because, in their view, this finding from the
analytics team suggested a clear strategy to improve fundraising and alumni
engagement. In particular, on the basis of this analysis, they had decided to
make a major push to encourage alumni who had already given for five years
in a row to give a sixth—the idea being that the evidence of a correlation bet-
ween giving for six years and giving in the future suggested that giving in that
sixth year had a big causal effect on future giving, so resources spent encour-
aging five-year givers to become six-year givers were being put to the best
possible use.

Provide two arguments, using the clear thinking skills you acquired in this
chapter, to explain why this might not be a good plan.

9.4 Shortly after Harvard psychologist Daniel Gilberts book, Stumbling on Hap-
piness, was released, he was on TV, where he informed Stephen Colbert that
"marriage is one of the best investments you can make in happiness." That
advice implicitly rests on a causal claim: marriage causes happiness.

Much recent research documents a positive correlation between marriage
and happiness. But is the relationship causal?
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(a) Provide an argument for why the correlation between marriage and
happiness might be the result of reverse causation (happiness causing
marriage, rather than the other way around).

(b) Identify two confounders that you think might make a causal interpre-
tation of the correlation between marriage and happiness problematic.
For each, explain why you believe the confounder might affect both
treatment (being married) and outcome (happiness).

(c) Sign the bias for each of the confounders you identified. Having done
so, explain whether each tends to make the observed correlation bet-
ween marriage and happiness an over- or under-estimate of the true
causal effect.

(d) A study by Anke Zimmermann and Richard Easterlin follows peo-
ple from up to four years prior to their first marriage through several
years after getting married. The basic finding is illustrated in the left-
hand panel of the figure on this page, which shows the life satisfaction
of people who got married during the study period relative to those
who never got married during the study period. As we go from left to
right, we see how the life satisfaction of a person changes over time as
they first cohabitate with a partner, then get married, and continue that
marriage for more than a year.
i. Compare the life satisfaction of people who have been married

for a while to that of people who are not married but are living
with their partner. Do you find this evidence supportive of or
contrary to Gilbert s advice?

ii. Identify a confounder that this comparison suggests may have
existed in the original correlation.

Baseline Cohabitation Married < lyr Married > lyr
Years relative to event

Life satisfaction and marriage.

(e) A study by Jonathan Gardner and Andrew Oswald also follows individ-
uals over time but asks a different question. It considers what happens
to peoples happiness when marriages end. The study looks at two ways
a marriage might end: divorce or death of a spouse. The results are
summarized in the right-hand panel of the figure.
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The horizontal axis shows years relative to an important event
(divorce or widowhood) at time 0. The vertical axis shows life
satisfaction. Life satisfaction is shown in black for those who became

divorced and in gray for those who became widowed.
i. Notice the initial difference in life satisfaction between those

who became widowed and those who got divorced, even before
the event occurred. Does this difference make you more or less
confident in Gilberts causal interpretation? Why?

ii. Now consider the widows and widowers (gray line). How does
their happiness change before, during, and after the year in which
their spouses passed away? Does this make you more or less
confident in Gilberts causal interpretation? What does this com-
parison make you think might be going on in Gilberts original
correlation?

9.5 Download "HouseElectionsSpending2018.csv" and the associated
"README.txt," which describes the variables in this data set, at
press.princeton.edu/thinking-clearly.
(a) Run a linear regression that finds the relationship between incum-

bent vote share and incumbent spending. (Note: This may require you
to recode some of the variables in the data set or generate your own
variables that better suit your goal.)

i. Is the correlation positive or negative?
ii. According to this data, do incumbents who spend more do

better or worse?
iii. Interpret the magnitude and direction of the correlation between

incumbent spending and incumbent vote share.
(b) Do the same as above for challengers.
(c) Lets think about whether the regressions you've run constitute

compelling evidence of the effect of campaign spending ofvote
shares.

i. Identify three confounders you are worried about,
ii. Do you have any variables in this data set that measure those

confounders? If so, identify a variable that might plausibly
measure a confounder that is in the data set.

iii. Using linear regression, assess whether incumbent spending and
challenger spending (the treatments) are in fact correlated with
one of the potential confounders measured in the data set.

9.6 Find an example of a researcher, journalist, policy maker, or analyst who you
believe has made an error by wrongly interpreting a correlation as credible evi-
dence of a causal relationship. Your example should not be closely related to
any example discussed in class or in the readings. Explain the evidence pre-
sented, and explain why you think this correlation is not persuasive evidence
of the purported causal relationship. Discuss the likely direction of the bias. As
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a bonus exercise, continue to think about your example as you read through
the next four chapters. Can you think of a better way to more credibly estimate
the causal relationship of interest?

Readings and References
The study of the Preuss School is

Larry McClure, Betsy Strick, Rachel Jacob-Almeida, and Christopher Reichher.
2005. The Preuss School at UCSD. Research report of The Center for Research
on Educational Equity, Assessment and Teaching Excellence, create.ucsd.edu/_files/
publications/PreussReportDecember2005.pdf.

The study on the Knowledge is Power Program is

Joshua D. Angrist, Susan M. Dynarski, Thomas J. Kane, Parag A. Pathak, and Christo-
pher R. Walters. 2012. "Who Benefits from KIPP?" Journal of Policy Analysis and
Management 31(4):837-60.

The quote about many null findings in the literature studying the effects of charter
schools is from

Julian R. Betts, Lorien A. Rice, Andrew C. Zau, Y. Emily Tang, Cory R. Koedel. 2006.
Does School Choice Work?: Effects on Student Integration and Achievement Public
Policy Institute of California.

The study of practice and skill among violinists is

K. Anders Ericsson, Ralf T. Krampe, and Clemens Tesch-Romer. 1993. "The Role of
Deliberate Practice in the Acquisition of Expert Performance." Psychological Science
100(3):363-406.

The study ofhormonal contraception and HIV is

Renee Heffron, Deborah Donnell, Helen Rees, and Connie Celum. 2012. "Use ofHor-
monal Contraceptives and Risk ofHIV-1 Transmission: A Prospective Cohort Study."
The Lancet Infectious Diseases 12(l):19-26.

The study examining the correlation between electoral success and campaign spend-
ing for incumbents and challengers is

Gary C. Jacobson. 1978. "The Effects of Campaign Spending in Congressional Elec-
tions." American Political Science Review 72(2):469-91.

We discussed several examples drawn from:

Tyler Vigen. 2015. Spurious Correlations: Correlation Does Not Equal Causation.
Hachette Books.

We discussed three studies of happiness in exercise 4. You can find a general
discussion of happiness research in

Daniel Gilbert. 2007. Stumbling on Happiness. Vintage.
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The study of happiness before and after marriage is
Anke C. Zimmermann and Richard A. Easterlin. 2006. "Happily Ever After? Cohab-
itation, Marriage, Divorce, and Happiness in Germany" Population and Development
2tevfcw32(3):511-28.

The study of happiness before and after the ending of a marriage is
Jonathan Gardner and Andrew J. Oswald. 2006. "Do Divorcing Couples Become
Happier by Breaking Up?" Statistics in Society 169(2):319-36.



CHAPTER 10

Controlling for Confounders

What You'll Learn

• If we can observe a confounder, we can control for it and mitigate the bias
arising from it.

• The most common way to control for a confounder is by including it in a
regression, although there are other approaches.

• Through graphs and simple examples, you will develop an intuitive under-
standing ofhow this works.

• Controlling is not magic. It doesn t remove bias arising from unobserved con-
founders or reverse causation.

• We should typically control for confounders but not mechanisms.

Introduction

In chapter 9, we saw that confounders are a big problem when we re trying to learn
about causal relationships from correlations. Here, we are going to talk about the first
line of defense against confounders, controlling.

You likely have heard people talk about controlling before, but what does it really
mean? Controlling involves using statistical techniques to find the correlation between
two variables, holding the value of other variables constant. The easiest way to begin to
understand the idea is through some examples.

Party Whipping in Congress
A not terribly surprising fact about the United States Congress is that Republicans

are more likely to vote in a conservative manner than Democrats. One way ofmeasuring
this, quantitatively, is through the scores given to each congressional representative by
the right-leaning interest group the American Conservative Union (ACU). Each year,
the ACU chooses twenty-five important bills and gives each congressperson a score
between 0 and 100 based on how they voted on those bills. Since the ACU leans right,
a higher score indicates a more conservative voting record.

We can back up the claim that being a Republican is correlated with a conserva-
tive voting record by checking whether Republicans have higher ACU scores than
Democrats on average. Table 10.1, based on data from the House of Representatives
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Table 10.1. Comparing the voting records of Republicans and
Democrats in the U.S. Congress.

Average ACU Score

Republicans
Democrats

Difference

83

19

64

in 1997, shows that they do. Democratic congressional representatives have an average
ACU score of 19, while Republicans have an average ACU score of 83. On average,
Republicans vote 64 ACU points more conservatively than do Democrats.

This data indicates that Republican and Democratic congressional representatives
vote quite differently. What might explain such polarization?

One idea advanced by many political scientists is that party pressure causes the diver-
gence in legislative voting behavior. Parties have lots oftools at their disposal to pressure
rank-and-file members to vote the party line. Perhaps most important among these
tools is help with fundraising for reelection campaigns.

But before we interpret the correlation between party membership and voting
record as evidence for the effect of party discipline, we should consider possible con-
founders. A confounder, in this case, is some other feature of the world that affects both
congressional representatives' party membership and their voting records.

As illustrated in figure 10.1, ideology is one obvious candidate for a confounder. The
Republican party has a conservative reputation. The Democratic party has a liberal rep-
utation. Hence, a conservative may be more likely to run as a Republican and a liberal
may be more likely to run as a Democrat. Moreover, a politicians personal ideological
leanings maywell influence how theyvote on legislation once in Congress. Ifpeople sort
into the parties according to ideology in this way, there is reason to think that Repub-
lican representatives would vote more conservatively and Democratic representatives
would vote more liberally, even if the parties exercised no discipline. So personal ide-
ology is plausibly a confounder. In light of this, it would be a mistake to interpret the
correlation between party membership and voting record as an unbiased estimate of
the causal impact of party discipline on the voting behavior of representatives.

In order to address this potential confounder, we would like to control for it. In its
simplest form, controlling for ideology simply means looking at the correlation between
party membership and voting record, holding personal ideology constant. To do so, we
first need a measure of personal ideology. Fortunately, we have a plausible candidate.

In 1996, a non-partisan organization called Project Vote Smart administered a sur-
vey, the National Political Awareness Test (NPAT), to congressional candidates. The
survey asked candidates their views on a wide array of issues. From their answers,
Project Vote Smart then generated a liberal to conservative ranking. Seventy-six percent
of candidates responded to the survey, so we have a measure of the political ideology of
a large number of congressional representatives.1

To control for personal ideology in our analysis of the relationship between party
membership and voting record, we simply compare the voting records of Democrats

Response rates declined considerably in subsequent elections, which explains why we're showing data from
the late 1990s, even though it precedes the birth of many of our readers.
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Figure 10.1. Ideology affects what party a politician joins and how that politician votes when in office.
Hence, it is a confounder.

Table 10.2. NPAT scores controlling for party.

Republicans

Democrats

Difference in

AvgACU Score
# ofPeople

AvgACU Score
# ofPeople

Average ACU Score

Liberal

1-20

n/a

0

10

70

n/a

<— NPAT Percentile -

21-40 41-60

44

4

18

66

26

68

45

41

24

27

—► Conservative

61-80 81-100

86

69

96

1

-10

94

69

84

1

10

and Republicans with similar NPAT scores. If the NPAT is doing a good job of
measuring personal ideology, these comparisons will tell us about the difference in
voting records of Republicans and Democrats, holding personal ideology constant
(or, controlling for personal ideology).

Table 10.2 sorts congressional representatives into five bins, based on their NPAT
scores. The left-most bin has representatives with the most liberal ideology according
to their NPAT answers. The bins become progressively more conservative as we move
to the right.

Looking at the data broken down in this way, a few things immediately jump out.
First, and most importantly, in no column is the difference between Republican and
Democratic voting records anywhere close to the 64-point difference we found before
controlling for personal ideology. This suggests that personal ideology was an impor-
tant confounder in that correlation—a large portion of the difference in voting record
between Democrats and Republicans was due to the members of those two parties hav-
ing different underlying personal preferences about policy rather than to party pressure.
The reason, of course, is as we said earlier. More conservative people tend to become
Republicans and more liberal people tend to become Democrats. This fact is reflected in
the observation that the number ofpeople in each cell is increasing in conservatism for
Republicans and decreasing in conservatism for Democrats (i.e., almost all the Repub-
licans are in the NPAT 41st-100th percentile and almost all the Democrats are in the
NPAT lst-60th percentile).
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Second, within a party, as you move across the ideological bins, average ACU scores
are, for the most part, going up. There is one exception—Democrats in the 61st-80th
percentile vote more conservatively than Democrats in the 81st-100th percentile—but
this comparison is not especially informative because it involves the comparison ofonly
two people, since there are so few ideologically conservative Democrats.

Third, the difference between average Republican and average Democratic voting
records varies across the columns. That is, the correlation between party and voting
depends on ideology. This is fine. But often we want a single, overall measure of the
correlation between partisanship and voting record controlling for personal ideology,
rather than an ideology-by-ideology measure. To get that single number, we will need
to take some sort of a weighted average of the differences from the various columns.
But how do we decide what weights to give to each column?

As we start to think about the correct weights, note that there is clearly one col-
umn that is more informative than the others about the different voting behavior
of Democrats and Republicans with similar personal ideologies—the column for the
NPAT 41st-60th percentile. In each of the other columns, there are either very few
Republicans or very few Democrats. But in the 41st-60th percentile column there are
a large number of representatives from both parties. This isn't surprising—the place to
look for ideological overlap across the parties is in the ideological center. So we probably
want our weighted average to put a lot of weight on that column.

More generally, it is useful to think back to chapter 5, where we learned about how
ordinary least squares (OLS) regression fits a line to data to minimize the sum ofsquared
errors. (When we refer to regression in this chapter, we will always be referring to
OLS regression.) OLS is one principled way to choose weights for the five columns.
So consider the following regression:

ACU Rating = a+ ^i • Republican + #> -NPAT2i-40 + & -NPAT4i-60
+ £4 •NPAT6i_8o + ^5 -NPATgi-ioo + e

In this regression, the unit of analysis is an individual representative. The variable
ACURating is an individual representatives ACU score. The variable Republican is what
we call a dummy variable: it takes the value 1 if the representative is a member of the
Republican party and the value 0 if the representative is a member of the Democratic
party. The various NPAT variables are also dummy variables, taking a value of 1 if the
representative is in the relevant percentile range and a value of 0 otherwise.2 The greek
letter s (epsilon) represents the error.

The coefficient f}\ in this regression gives us the weighted average we have been talk-
ing about—that is, f$\ is the correlation between ACU score and being a Republican,
controlling for personal ideology (as measured by NPAT percentile). We will also get
estimates for the coefficients on the four included NPAT categories and the intercept
(a). These also have interpretations. However, we are running the regression because
we are interested in the correlation between ACU score and Republicanism controlling
for ideology, so we focus on f}\.

2 Since everyone is in one of the five NPAT categories, one of them must be omitted. Here, we have omitted the
lst-20th percentile. This is analogous to the fact that we can't include both a Democrat and a Republican variable
in the regression when every member is either one or the other. We couldn't separately identify the effect ofbeing a
Democrat and the effect ofbeing a Republican, so we just include a Republican variable and interpret the coefficient
as the effect of being a Republican versus being a Democrat.
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Running this regression on our data yields an estimate of f}\, which we label J3\, equal
to 24. (It is an estimate because our data is a sample drawn from the population of all
congressional representatives, so the observed correlation also reflects noise.) Not sur-
prisingly, this is very close to the difference between average Republican ACU score
and average Democratic ACU score in the column corresponding to the 41st-60th per-
centile, which, as we said, is where almost all the information is. The regression, of
course, puts a little weight on the other columns, dragging the estimate down from
27 to 24. But that column is basically telling us the answer.

Having controlled for ideology, we still probably don t have a terribly credible esti-
mate of the causal effect of party discipline on the voting records of congressional
representatives. This is because there could be many other confounders beyond per-
sonal ideology. That is, within an NPAT bin, there may be lots of other factors that lead
some people to become Democrats and others to become Republicans that also have
an independent effect on their voting behavior in Congress. For instance, even holding
fixed personal ideology, Democrats may tend to represent districts with more liberal
voters and Republicans may tend to represent districts with more conservative voters.
Ifpoliticians choose how to vote on bills with an eye toward how their voters will react,
then these differences in constituencies are yet another confounder. We are sure you
can think of others.

As the list of confounders grows, making a table that breaks down the data into all
the different possible cells becomes more difficult and unwieldy. But, as long as you can
measure the potential confounders, you can control for them in a regression. Doing
so will always get you an estimate of f$\ reflecting the weighted average of the various
cells in that (imagined) big table that minimizes the sum of squared errors. Given this,
regression will be our most important tool for controlling for confounders. Therefore,
it is useful to have a better understanding of exactly how controlling with regression
works.

A Note on Heterogeneous Treatment Effects
As we discussed in chapter 3, for almost all interesting examples of causal relation-

ships, the effects of interest are heterogeneous—that is, they're not the same for every
unit of observation. This was true in our flu shot example, where the flu shot prevented
some people from getting the flu who otherwise would have, but didn't prevent other
people from getting the flu, either because they weren't going to get it in the first place
or because they were and the flu shot didn't work for them. It's probably also true for the
above example about party effects on voting. To the extent that parties affect roll-call
voting by members of Congress, this effect is probably not the same for every mem-
ber of Congress. Perhaps some members of Congress are strong ideologues who will
vote the same way regardless of any party pressure, so that there is no treatment effect.
Perhaps others depend on their party's support for reelection and would do whatever
their party leaders asked, so that there is a strong treatment effect. And perhaps others
are somewhere in between.

It's important to think clearly about such heterogeneity when controlling because,
as our discussion around table 10.2 showed, once we start controlling for confounders,
we're no longer estimating the average effect of the treatment across all units. In our
example, to estimate the relationship between party and voting, controlling for ideol-
ogy, we put more weight on members of Congress with moderate ideologies. This is
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because there isn't much variation in party among members of Congress with extreme
ideologies—basically, all strong conservatives are Republicans and all strong liberals
are Democrats. If the effect of party membership is different for ideological moderates
than it is for ideological extremists, we have to acknowledge that we re focusing on the
former effect.

This acknowledgement raises a thorny problem. If controlling for a potential con-
founder meaningfully changes our causal estimate, this could be a sign that the estimate
without controlling was biased and that controlling reduced that bias. This is to the
good. But it could also be a sign that there are heterogeneous treatment effects, and
we've changed the subset of units for which we're estimating the average effect. To the
extent that the estimand we really care about is the average treatment effect across all
units, this could be to the bad.

These challenges will arise for other methods beyond controlling that we'll discuss
later in the book. We will refer back to this discussion when relevant. Sometimes we'll
say that instead ofestimating the average treatment effect (ATE) as our estimand, we can
only estimate a local average treatment effect (LATE) as our estimand, where local refers
to the subset of units for which we can generate a credible estimate. When treatment
effects are heterogeneous across units, the LATE need not be the same as the ATE. So if
the ATE is the estimand we really care about, we need to think clearly about the extent
to which estimates of the LATE may or may not be informative about the ATE. But, as
the economist Guido Imbens says of situations where we can only credibly estimate a
local average treatment effect, "Better LATE than nothing."

The Anatomy of a Regression
The key ingredients in any regression for causal inference are

• the dependent variable (also called the outcome variable),
• the treatment variable, and
• a set of control variables.

The dependent variable is the outcome you are trying to understand. The treatment
variable is the feature ofthe world whose effect on the dependent variable you are trying
to estimate. And the control variables are potential confounders that you are including
in the regression to reduce bias.

In the simple case where there is only one control variable, we write the regression
equation as

Y = a + p-T+y-X + s (10.1)

where Y is the dependent variable, T is the treatment variable, and X is the control
variable. The regression parameters (i.e., the quantities we'd like to estimate) are the
intercept a, the effect of the treatment /?, and the "effect" of the control variable y.
There is also an error term, £, reflecting the fact that units differ from their predicted
outcome for idiosyncratic reasons.

There's nothing in the regression equation that distinguishes the treatment variable
from the control variable. This distinction is conceptual and is driven by the question
you are trying to answer. If you want to know the effect of party on voting, controlling
for ideology, the party variable is your treatment and NPAT is your control. But if you
had wanted to know the effect of ideology on voting, controlling for party, this would
be reversed.
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This is also why the word effect is in scare quotes above when referring to the effect
of the control variable. Often, we don t actually care about the regression parameter
associated with a control variable (here, y). Whats important is that ft is an effect of
interest, and we are going to try to estimate it in an unbiased way.

One way to read Equation 10.1 is to take it literally. We can pretend that we know the
data-generating process. Each individual is outcome (Yj) equals a common intercept
(a) plus f$ - Tj plus y • X; plus idiosyncratic factors (6/). Another way to read the equa-
tion is to acknowledge that we don t know the data-generating process, but nonetheless,
we'd like to estimate ft—the average linear relationship between Y and T, controlling
forX.

As we noted in chapter 5 (though we didn't quite put it this way), whatever the data-
generating process, OLS regression always gives us the best linear approximation to the
conditional expectation function (BLACEF). So we dont have to pretend to know the
data-generating process in order to run a regression. If there are no baseline differences
across values of T after controlling for X, then the BLACEF corresponds to the average
effect of T on Y. In this case, knowing ft is very valuable.

Just as in our discussion from chapter 5, when we run this regression, we get estimates
a, J3, and y by computing the values ofa, /3, and y that minimize the sum ofthe squared
errors. Lets see what that means.

For any arbitrary values of the regression parameters—say a\ /3\ and yf—the
associated prediction of Yj for an individual i is

a' + p'-Ti + y'-Xi.

Lets label the idiosyncratic errors associated with this regression s''. For each observa-
tion /, they are the actual outcome minus the predicted outcome:

e^Yi-^' + p'.Ti + y'-Xi)

The OLS estimates—a, J3, and y—are the particular values ofthe regression parameters
that minimize the sum of the square of these errors. Our computer can compute them
really quickly.

Suppose we know that once we control forX, there are no other omitted confounders.
So the regression of Y on T and X gives an unbiased estimate of the effect of T on Y.
One question we might ask is how biased our results would have been if we failed to
control for X.

It turns out, we can answer that question. Call Equation 10.1 above the long regression
because it includes X. Now suppose we ran the following short regression instead:

Y = as + ps-T + ss (10.2)

The superscript S here indicates that we are talking about the short regression.
Importantly, there's no guarantee that fis from the short regression will be the same
as f$ from the long regression. In fact, they wont be the same ifX is a confounder.

We can quantify the bias associated with failing to include X in the regression.
Consider a regression that treats the control variable (X) as a dependent variable and
regresses it on the treatment (T):

X = T+7T-r + £
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Figure 10.2. The omitted variables bias formula tells us how to sign the bias from an omitted confounder.

You'll notice that we've used different Greek letters for the regression parameters here.
We now call the intercept r (the Greek letter tau), the coefficient on the treatment it
(the Greek letter pi), and the error £ (the Greek letter xi). We did this for a couple
reasons.

First, and most importantly, we didn t want to use the same letters here that had dif-
ferent meanings above. The parameter it, here, describes the correlation between T and
X—it's the slope relating changes in T to changes in X. We didn't want you to confuse
that with the two /Ts we've seen in this section (/3 and fis, each ofwhich describes some
version of the relationship beween the treatment and the outcome Y). Second, we also
don't want you to think that there's something special about certain Greek letters. It's not
the case that a must always represent the intercept, f$ the coefficient on the treatment,
and so on. After all, these are just symbols. We would like you to be able to look at the
equation and figure out what the constant is, what the coefficient on the treatment is,
what the error is, and so on, even if someone uses completely different symbols than
the ones we use.

The bias from excluding X from the regression of the outcome on the treatment is
Ps — p. It turns out, this bias is equal ton -y. That is,

Bias = j8&-j8=7T •)/.

We sometimes call this the omitted variable bias formula.

What this formula tells us is that the short regression gives a biased estimate of the
effect ofthe treatment on the outcome if the control variable is correlated with the treat-
ment variable (so that it ^ 0) and the control variable influences the outcome variable
(so that y ^ 0).

Ifwe can't observe X, we can't control for it by including it in the regression. But the
omitted variable bias formula gives us a way to think about the direction and extent of
the bias. Indeed, the omitted variable bias formula formalizes our ideas from chapter 9
about how to sign the bias, as summarized in figure 10.2, which repeats figure 9.7 but
points out that the regression parameters it and y directly measure the relationships
relevant for determining the sign of the bias.
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Table 10.3. The omitted variable bias formula helps us think about whether failing to control for a
confounder results in an over- or under-estimate of the causal effect.

Omitted Variable Positively Omitted Variable Negatively
Correlated with Treatment Correlated with Treatment

7T>0 7T<0

Omitted Variable Positively
Correlated with Outcome

y>0

Omitted Variable Negatively
Correlated with Outcome

y<0

Positive bias Negative bias
7r-y>0 7T-y<0

Negative bias Positive bias
7r-y<0 7T-y>0

If there's an unobserved confounder that we suspect is positively related to both
T (so it > 0) and Y (so y > 0), then the omitted variable bias formula tells us that
/3s — P > 0, so we are over-estimating the effect of T. The same is true if the con-
founder is negatively related to both T and Y (so that it and y are both negative)—again,
the bias is positive and we are getting an over-estimate. If the confounder is positively
related to T but negatively related to Y (so it > 0 and y < 0) or vice versa (so it < 0 and
y > 0), the bias is negative and we under-estimate the effect of T. This is summarized
in table 10.3.

How Does Regression Control?
We've seen that controlling for a variable (X) can change the coefficient describing

the relationship between some other variable of interest (T) and an outcome variable
(Y). In particular, controlling for X will change the estimated relationship between T
and Y ifX is correlated with T and has an independent relationship with Y. Here's one
way to think, graphically, about what the regression is doing when we control for a
variable.

Suppose we want to know the effect of height on income, in which case both our
outcome and treatment variables of interest are continuous (they can, in principle, take
an infinite and uncountable number of possible values). Figure 10.3 shows some data
on income and height from the National Longitudinal Survey conducted by the U.S.
Bureau ofLabor Statistics. A representative sample ofU.S. residents born between 1980
and 1984 were asked about their heights and their incomes in 2014, when they were
between the ages of 34 and 38.

To allow for easier visualization, we grouped respondents by height and gender, so
every dot in figure 10.3 corresponds to a group of fifteen or more individuals of the
same gender and height (measured in inches). The figure plots the average income of
each group, measured in thousands of dollars above $20,000, and the average height,
measured in feet above 5 feet. (You'll see in a moment why we scaled our variables in
such an unusual way.) The hollow dots correspond to groups of men and the solid dots
correspond to groups ofwomen.

Visually, we see a strong, positive correlation between height and income. What
would we get ifwe ran a regression of income on height with this data, ignoring gender?
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Figure 10.3. Income and height among 34- to 38-year-old Americans in 2014.
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As we've seen previously, this would simply involve finding the line that best fits the
data. Figure 10.4 plots that line. Indeed, the best-fitting line has a strong positive slope,
indicating that, on average, taller people earn higher incomes.

To be a little more precise, the regression finds the line that best fits the data by iden-
tifying the values of a and ft that minimize the sum of squared errors in the following
equation:

Income = a + ft • Height + s

These two values are illustrated by figure 10.5. The height ofthe line when Height = 0
(i.e., when a person is 5 feet tall) is a, and the slope of the line is ft. For this particular
data set, we estimate a slope of about 14.8. On average, people who are one foot taller
earn an extra $14,800 of income per year!

Of course, before we draw a causal interpretation from this regression coefficient,
we should think about confounders. Gender is one possibility. Men are, on average,
taller than women. And we suspect that men, on average, earn higher incomes than
women for reasons unrelated to height. (This could be the result of gender discrimina-
tion in labor markets or other societal factors. Although the reasons are, of course, very
important, we don't need to know them in order to control for gender as a confounder.)
Indeed, we can see in the picture that women do seem to have lower heights and lower
incomes, on average. So gender is a confounder that we might want to control for in
this regression.

One way we could start addressing this concern would be to run separate regressions
for men and women:

Income = aM + ftM- Height + sM
Income = a w + ft w • Height + s w

Ifwe did that, we would fit two regression lines, as shown in figure 10.6.
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Figure 10.4. Regressing income on height.
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Figure 10.5. Graphical interpretation of regression coefficients.

The separate regression lines for men and women are shown in gray, while the pre-
vious regression line that pooled everyone together is still shown in black. Interestingly,
the correlation between height and income is smaller within each gender than it is
across the population as a whole. That is, both f$w and f$M are smaller than $ from
our earlier regression. Also notice that the slope is greater for men than it is for women,
PM>Pw.
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Figure 10.6. Representing both the regression line for the pooled data (black line) as well as separate
regression lines for men and women (gray lines).

This procedure of splitting the data and running separate regressions tells us the
correlation between income and height separately for men and women. Thinking back
to our congressional politics example, this is analogous to the cells at the bottom of
table 10.2, which told us the difference in average ACU score between Republicans and
Democrats for each bin of NPAT scores.

While the separate correlations are good to know, just as in the congressional poli-
tics example, we might want to have one summary estimate of the correlation between
income and height, controlling for gender. That number will be a weighted average of
the slopes ofthe two gray lines in figure 10.11 (just as in the congressional politics exam-
ple, where the single number was a weighted average of the individual differences at the
bottom of table 10.2.). But we need to know how to assign the weights.

The most straightforward way to do this is to run a regression of income on both
height and gender. The regression equation would look like this:

Income = a + ft • Height + y • Male + s

Graphically, how will this regression separately estimate a, f$, and y? Instead of find-
ing one line that best fits the data, we can think of finding two lines that best fit the
data—one for men and one for women. But unlike when we ran separate regressions,
we now constrain those two lines to have the same slope (/J). Figure 10.7 shows how
those two lines look if we do that and compares them to the lines we got when we ran
separate regressions for men and women.

Notice that the slope of the two black lines is identical, by construction. And the
slope is somewhere in between the slope for those we got running the two separate
regressions (the gray lines). That is, it is a weighted average of the two. Figure 10.8
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Figure 10.7. Representing the regression where we control for gender by including it in the regression of
income on height (black lines) as well as separate regression lines for men and women (gray lines).
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Figure 10.8. Regression coefficients when controlling for gender in the regression of income on height.

shows how, having estimated these two parallel lines that best fit the data, we've also
estimated the regression parameters.

The intercept of the line for women (Male = 0) is a. The distance between the two
lines is y. And the slope of the two lines is f$. Put differently, a is the predicted income
for women who are 5 feet tall; y is the predicted difference in income between men
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and women of the same height; and 0 is the average relationship between height and
income, controlling for gender.

Not surprisingly, controlling for gender has significant implications for the estimated
relationship between height and income. Instead of 14.8, our new estimate for the slope
is about 8.1. The change is due to the fact that gender is a confounder—it affects both
height and income. Using our tools for signing the bias from chapter 9, we know that if
the confounder is positively correlated with both treatment and outcome, as is the case
here, it creates positive bias. Since 14.8 was an over-estimate of the true effect of height
on income, when we control for gender, we get a smaller estimate.

It is worth noting that controlling for gender affects not only our estimate of the rela-
tionship between income and height but also the precision of that estimate, although
the direction of that effect is theoretically ambiguous. On the one hand, adding a
control that is correlated with the outcome reduces the residual variation in that out-

come, which improves precision. On the other hand, adding a control that is correlated
with the treatment reduces the residual variation in the treatment, which increases the
uncertainty of our estimates. Whether controlling for a confounder improves or harms
precision will depend on the relative impact of those two forces.

Given the discussion above, it might be tempting to add additional control vari-
ables to your regression, not for the purpose of reducing bias but with the goal of
improving precision. Indeed, if you can find pre-treatment variables that are strongly
correlated with the outcome but not the treatment; including them in a regression will
tend to improve the precision of your estimates. However, if you keep trying control
variables until you get a statistically significant estimate, that's p-hacking, and its a
bad idea.

Since we ve talked about the analogy between what we've just done and our con-
gressional politics example, let's revisit that example in a regression framework. Notice,
in this case, the treatment (Republican or Democrat) is binary, but the potential
confounder (ideology) is measured continuously by the NPAT score.

Again, start with a scatter plot, this time of the American Conservative Union rat-
ing on the vertical axis and the NPAT conservative score on the horizontal axis. In
figure 10.9, the hollow dots correspond to Democrats and the solid dots correspond
to Republicans.

Since the treatment is binary, we can start with a simple comparison of the aver-
age ACU rating for Republicans and for Democrats. Consider the following regression
equation:

ACU Rating = « + /}• Republican + £

To minimize the sum ofsquared errors, the coefficient a equals the average ACU rat-
ing for a Democrat (Republican = 0) and the coefficient ft is the difference between the
average ACU rating for a Republican and for a Democrat. Thus, as we've already seen,
a = 20 and f$ = 84 — 20 = 64. This is illustrated in figure 10.10, where the horizontal
lines correspond to the average ACU ratings for Democrats and Republicans.

Our concern, of course, is that personal political ideology is a confounder in this
regression, so that ft does not estimate the true effect of party on congressional voting
behavior. So we would like to control for personal ideology. We will do so using the
NPAT Conservativeness score, measured on the horizontal axis.

In our income-height example, we were concerned about a confounder that was mea-
sured as a binary variable—gender. Our first step in building intuition about controlling
was to consider running the original regression (income and height) separately for each
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Figure 10.9. ACU score and NPAT conservative score.
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Figure 10.10. Coefficients in regression of ACU score on party.

value ofthe confounder. Then we saw that the final regression coefficient on height con-
trolling for gender was a weighted average ofthe slopes ofthese two separately estimated
regression lines.

Here, in our congressional politics example, because our confounder is continu-
ous, we cannot do a separate regression for each value of the confounder. But we can
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Figure 10.11. Controlling for NPAT score (ideology) in the relationship between ACU score and party by
running two separate regressions, one for each party.

do something similar: run a regression of ACU Rating on NPAT Conservativeness
separately for Democrats and for Republicans (the superscripts P on the regression
coefficients refer to the idea that this is the regression for party P):

ACU Rating = ap + yp • NPAT Conservativeness + sp

That gives us two regression lines, one for Republicans and one for Democrats, as in
figurel0.ll.

For each value ofNPAT Conservativeness, the predicted ACU Rating ofa Republican
with that NPAT Conservativeness score is

a + y - NPAT Conservativeness

And for each value ofNPAT Conservativeness, the predicted ACU Rating ofa Democrat
with that NPAT Conservativeness score is:

a + y • NPAT Conservativeness

This means that at any given value of NPAT Conservativeness, the gap between
the two lines is the difference in predicted ACU Rating between Republicans and
Democrats with that NPAT score. Hence, this regression allows us to get a continuous
analogue of our earlier binary comparison. It tells us, for each value of NPAT Conser-
vativeness, what the predicted difference in mean ACU Rating is between Republicans
and Democrats.

But we arent done. As before, the goal is to get a single measure of the relationship
between ACU Rating and party membership, controlling for NPAT Conservativeness.
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Figure 10.12. Controlling for NPAT score (ideology) in a regression of ACU score on party.

Currently, we have a separate measure of that relationship for each value of NPAT
Conservativeness. The final step in controlling, then, is to use regression to create the
weighted average of these differences that minimizes the sum of squared errors. We do
so with the following regression:

ACU Rating = a + ft • Republican + y • NPAT Conservativeness + s

Figure 10.12 illustrates this regression. The parameters tells us the average ACU Rat-
ing of a Democrat with NPAT Conservativeness of 0. The parameter y tells us the slope
of the relationship between ACU Rating and NPAT Conservativeness. Importantly,
unlike our previous two regressions, where yR and yD were different, this regression
imposes that the slope of the relationship between ACU Rating and NPAT Conserva-
tiveness be the same for both parties. Hence, this slope y is a weighted average of yR
and yD. Finally, the coefficient ft is the gap between the two lines. This gap is constant
across NPAT Conservativeness scores because we forced y to be the same for both par-
ties, making the lines parallel. Hence, f$ estimates the average difference in ACU Rating
between Republicans and Democrats controlling for NPAT Conservativeness.

Controlling and Causation
While controlling allows you to mitigate or remove the biases arising from spe-

cific confounders that you are able to measure and include in your regression, we are
typically still skeptical in most cases that controlling alone allows us to uncover unbi-
ased estimates of causal relationships. Remember from chapter 9 that if we want to
interpret a correlation as an unbiased estimate of a causal effect, we must believe that
there are no baseline differences between the treated and untreated units. In other
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words, our comparison has to plausibly be apples-to-apples. If we regress Y on T and
X (and other possible confounders), we're still making a similar assertion ifwe give the
coefficient on T a causal interpretation. We are saying that, other than the set of vari-
ables we controlled for, we believe there are no confounders in the relationship between
Y and T and no reverse causality. Put differently, for controlling to give an unbiased
estimate of a causal effect, we must control for all the confounders.

In our experience, it is hard to find situations (other than randomized experi-
ments, which we will discuss in chapter 11) where it feels plausible that there are
really no omitted confounders. Typically, even if the analyst controls for lots of things,
you can think of other potential confounders that are either unobservable or unmea-
sured in the data and, thus, can't be controlled for. For instance, ask yourself whether
you can think of any potential confounders beyond gender in the relationship bet-
ween income and height. The answer is, of course, yes, including economic, biological,
cultural, health, and other characteristics. For instance, wealthy parents might pro-
vide their children with better nutrition, which might make them taller, and might
also help their children in other ways that allow them to earn higher incomes. It is
hard to imagine that you would be able to measure and control for all possible con-
founders.

Reverse causation is another reason we don't generally think controlling for con-
founders can uncover causal relationships on its own. In chapter 9, we talked about
how both confounders and reverse causation can prevent us from making an apples-
to-apples comparison. The idea of controlling is to try to account for confounders as
best we can, but ifthere is reverse causation, meaning the outcome affects the treatment,
there's no amount of controlling that can make that problem go away.

Let us give you an example.

Is Social Media Bad for You?

There is widespread concern that exposure to social media is bad for people. And,
indeed, many studies show a negative correlation between social media usage and
various measures of a person's subjective well-being and mental health.

Of course, that correlation may not reflect a causal effect of social media on well-
being. For instance, there might be reverse causality—perhaps people who are sad,
lonely, or distressed spend more time on social media than people who are happier
or more socially connected. Or there might be confounders—perhaps socioeconomic
status, education, or geography affect both social media usage and subjective well-being.

A first thing you might think to do to get at an estimate of the causal relationship is
to control for some of these confounders. How well will that controlling strategy do at
estimating the true causal effect?

There is a study that can provide some insight into that question. A group of scholars
interested in the effects of social media ran an experiment. They first identified a large
group of Facebook users willing to participate in their study. (The participants didn't
know what the study was about.) From each of these people they elicited measures of
subjective well-being, Facebook usage, and how much they'd have to be paid to turn
off Facebook for a month. Then the experimenters randomly selected some of these
people and in fact paid them to turn offFacebook for a month (which they were able to
monitor). The others didn't turn off Facebook but continued to be part of the study as
a control group. The researchers then measured subjective well-being again at the end
to see whether turning off Facebook had changed the subjective sense ofwell-being for
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Figure 10.13. Estimates of relationship between Facebook usage and subjective well-being.

those in the treatment group, relative to those in the control group who did not turn off
Facebook.

The nice thing about this study, for our purposes, is that the experiment, by randomly
assigning Facebook usage, gives an unbiased estimate of the effect of Facebook usage.
The researchers also asked about Facebook usage and subjective well-being at the start
of the study, so by comparing levels of well-being across people with different levels
of Facebook usage at the beginning of the study, they could also replicate the simple
correlation reported in earlier studies. Moreover, the researchers, also observed a bunch
of details about the individuals in their study and so could control for some potential
confounders—for example, income, age, sex, education, race, political affiliation.

If they were able to control for all confounders, then the estimate of the relation-
ship between Facebook usage and subjective well-being from controlling and from the
experiment would be the same in expectation. So, by comparing the simple correla-
tion, the correlation controlling for these potential confounders, and the experimental
estimate, we can start to get a sense of how well controlling does, in this setting, at
recovering the true causal effect.

Figure 10.13 shows the simple correlation, the correlation controlling for potential
confounders, and the estimate from the experiment (each surrounded by a 95% confi-
dence interval). All are measured in units of average Facebook use per day. As you can
see, the simple correlation gives the biggest estimate ofFacebooks negative relationship
with subjective well-being. Controlling for potential confounders reduces that estimate
a bit. But the experimental estimate is about one-third the size of the estimates from the
simple correlation and about one-half the size of the estimate controlling for potential
confounders. This suggests that the strategy of controlling, here, still leaves us with a
substantial over-estimate of the true effect.

Reading a Regression Table
YouVe seen graphical representations of regression. But when you run a regression

on your computer or see regression results discussed in a report, they are often pre-
sented in the form of a table. So it is worthwhile to be able to understand and interpret
the different parts of a regression table. We first saw regression tables in chapter 5, but
we now know enough to go into more detail.

Let s go back to our analysis ofthe relationship between congressional voting records
and party. In that setting, we ran three regressions.
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First, we regressed our measure of roll-call voting on party without controlling for
anything:

ACU Rating = « + /}• Republican + s
Second, we controlled for ideology by including indicators for different ranges of the

NPAT score:

ACU Rating = a + ft • Republican + ft • NPAT21-40 + ft • NPAT4i-6o
+ ft • NPAT6i_80 + ft • NPAT8i_ioo + s

This is what we did to find the correct weighted average in our discussion surrounding
table 10.2.

Third, we controlled for ideology by including the continuous NPAT variable:

ACU Rating = a + ft- Republican + y • NPAT Conservativeness + s

Each column of table 10.4 presents the results from one of these three regressions.
Let's talk about how to read this table. The first column simply contains labels. The

second column shows the results from our first regression: ACU Rating on Republican,
controlling for nothing. The third column shows the results from our second regression:
ACU Rating on Republican, controlling for NPAT category. The fourth column shows
the results from our third regression: ACU Rating on Republican, controlling for the
continuous NPAT Conservativeness score.

Along the first row, we see the name of our dependent variable. For these regres-
sions, this is always ACU Rating. For each ofour regressions, the row labeled Republican
shows three pieces of information. The top number is our estimate of the coefficient on
Republican in our regression. The bottom number in parentheses is the standard error
on that estimate. And the stars indicate whether the result is statistically significantly
different from zero (and at what level). Looking across this row, we see that in the first
regression, the coefficient on Republican is 64.32. But once we control for NPAT score,
it drops dramatically. If we control with NPAT categories, it drops to 23.74. And if we
control with the continuous NPAT Conservativeness score, it is 24.28. (Not surprisingly,
it doesn't much matter exactly how we control for ideology.)

Going down the table, we then get the coefficient estimates, standard errors, and
statistical significance for each of our control variables. This is why the next five rows
are blank in the second column—we didn't control for anything in that regression. In
the third column, the four rows associated with the NPAT categories are filled in, but
the row associated with the NPAT Conservativeness score is blank. And in the fourth
column, the NPAT category rows are blank, but NPAT Conservativeness is filled in.
For all three regressions, the row called Constant is filled in. This is the estimate of the
intercept (a) from that regression.

The table contains two more pieces ofinformation. For each regression, the table tells
us how many observations there were in the data. Here, the answer is 349, reflecting the
number of congresspeople who filled out the NPAT survey in 1997.

And, for each regression, the table reports the r-squared statistic. Recall from chap-
ter 2 that this is the proportion of variation in one variable that can be predicted by
variation in other variables. So a value of .93 in our final regression says that, within the
sample ofdata we have, you can predict 93 percent ofthe variation in a congressperson's
ACU rating using party and NPAT score.
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Table 10.4. Relationship between ACU rating and party.

Variables ACU Rating ACU Rating ACU Rating

Republican 64.32*
(1.71)

NPAT21-40

NPAT4i_60

NPAT6i_80

NPATsi-ioo

NPAT Conservatism

Constant 19.09*

(1.25)

Observations 349 349 349

r-squared .80 .92 .93

Standard errors in parentheses. **p < .01

While that sounds pretty good, we urge you not to over-interpret the r-squared statis-
tic. In fact, when we run regressions, we often don t even report it. Typically, our goal is
not to predict or model the variation in our dependent variable. It is to learn whether
our key treatment variable matters for our outcome. For that, what we are really inter-
ested in is the coefficient estimate on that variable. Moreover, getting a high r-squared
statistic, on its own, isn t very meaningful. One easy way to successfully predict a lot of
the variation in your data is to just include lots of control variables in your regression.
But this doesn't mean youVe understood what is going on at all. Think back to our dis-
cussion of overfitting in chapter 5. Just because you fit the data really well (which is all
that a high r-squared means) by including lots of variables doesn't mean you can do a
good job predicting what the outcome will be when you look at observations not from
your data set. And in some cases, you can have a reliable, unbiased estimate of your
quantity of interest even though your r-squared is low.

Controlling for Confounders versus Mechanisms
Thinking clearly about controlling gets dicier when there is some variable that affects

both the treatment and the outcome but is also affected by the treatment. What can we
do in this situation? That variable is a confounder: it affects both the treatment and the
outcome. So it seems that we should control for it. But as we discussed in chapter 9, that
variable is also a mechanism: it is affected by the treatment and affects the outcome. So
it seems that we should not control for it, since it is part of the pathway by which the
treatment affects the outcome. What are we to do?

23.74**

(2.25)
8.01**

(1.76)
32.74**

(2.29)
52.27**

(2.83)
59.77**

(2.83)

10.29**

(1.24)

24.28**

(1.98)

82.05**

(3.44)
-2.10

(1.18)
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To make this conundrum more concrete, let's return to our example from chapter 9
where we were interested in the effect of per capita income on civil war. On the one
hand, democracies might implement better policies that improve income and might
also provide better opportunities for non-violent expression of political grievances,
which might directly affect civil war risk. From this perspective, whether a country is a
democracy or not is a confounder—that is, a pre-treatment covariate—and, thus, should
be controlled for. On the other hand, perhaps as a country becomes richer, its citizens
become more informed and start demanding greater democracy, which then reduces
the likelihood they turn to civil war. From this perspective, democracy is one of the
mechanisms by which GDP affects the likelihood ofcivil war—that is, a post-treatment
covariate—and, thus, should not be controlled for.

There really isn't a solution in such situations. You are damned ifyou do and damned
if you don't—which means that you aren't in a position to learn much about the causal
relationship you are interested in. To do that, you'd need a more creative approach,
which will be the subject of the next several chapters.

There Is No Magic
People would really like to believe that they can estimate causal relationships by just

controlling for all the confounders. And they'd like you to believe it too. But, as weVe
just discussed, in many important settings you will only believe there are no omitted
confounders if you aren t thinking clearly. And so, sometimes, people will use math-
ematical jargon, cool-sounding statistical methods, complicated computer programs,
and other technical wizardry to try to get you to not think clearly. It is important to not
be fooled. No matter what fancy techniques an analyst uses, if the fundamental strategy
is to control for the confounders, and if there are plausible confounders that are either
unobservable or unmeasured in the data, then they cant possibly have controlled for
them. Computers aren t magical. They can control for observable confounders. But they
cannot make unobservable confounders observable.

To see what we mean, consider the case of a perfectly fine and useful statistical tech-
nique called matching. Here's the idea. Suppose you have a continuous variable, X, that
you'd like to control for. You could match each treated unit to whatever untreated unit
has the most similar value ofX. Then, you might compute a difference ofmeans (or run
a regression) on that matched data set in order to estimate the effect of T on Y. This is
called nearest neighbor matching.

So, in our congressional politics example, you would start by matching each Demo-
cratic congressperson to the Republican congressperson with the most similar NPAT
score. Then, in this matched sample, you would compute the difference in average ACU
score between matched pairs of Republicans and Democrats, which is another way
of estimating the relationship between ACU score and political party, controlling for
NPAT score.

If you had multiple variables you wanted to control for, you'd have to define some
summary measure ofhow similar any two observations are across those variables. There
are lots of strategies for doing this. Some of them get pretty fancy in terms of compu-
tation, which can make it hard to keep thinking clearly. You must try to keep your wits
about you.

Matching has some advantages over regression as a technique for controlling. One
nice feature ofmatching is that it allows for more flexibility in the way in which the con-
trol variable might influence the outcome of interest. For instance, whereas regression
assumes the relationship is linear, matching makes no such assumption. Matching also
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has disadvantages relative to regression. One downside ofmatching is that its often less
precise than regression because you're using less information. Another downside is that
matching estimates can be biased because the best match for a treated observation will
have, in expectation, a higher value ofX if, for example, X is positively correlated with
T. There are statistical solutions to that problem as well, which can again start looking
pretty technical and fancy.

Matching, like regression, is a good statistical technique for controlling. We have
no objection to it. We get concerned because analysts sometimes like to present some
very technical matching algorithm and then say things like "Matching creates an
experiment-like comparison of units that differ in the treatment but are otherwise the
same." Such claims are an attempt to blind you with science. Matching is just a tool for
controlling. It creates no more of an experiment-like comparison than does a regres-
sion that includes control variables. That is to say, it controls for the variables that
were observed and matched on—nothing more. Your computer, no matter how fancy
the statistical algorithm, cant make the unobservables observable. Because that would
be magic. And there is no magic.

Wrapping Up
Controlling is a way to account for confounders and obtain better, less biased esti-

mates of causal relationships. There are lots of different ways to control, but they're all
fundamentally trying to do the same thing—generate more credible estimates by com-
paring treated and untreated units with similar values ofother observable pre-treatment
covariates.

While controlling is a valuable tool, it s not a silver bullet. In most interesting cases,
there will still be unobservable confounders that we can t control for, reverse causation,
or variables that are part confounder and part mechanism. So even when researchers
have controlled for lots of potential confounders, we should still worry about biased
estimates.

If controlling is typically an unconvincing strategy for estimating causal relation-
ships, what can we do that would be more convincing? One way—perhaps the only
way—to ensure unbiased estimates is to randomize the treatment yourself. There-
fore, the next chapter focuses on the so-called gold standard for causal inference—the
randomized experiment.

Key Terms
• Controlling: Using a statistical technique to find the correlation between two

variables, holding the value of other variables constant.
• Dummyvariable: A variable that indicates whether a given unit has some par-

ticular characteristic, taking a value of 1 if the unit has that characteristic and
0 if the unit does not.

• Dependent or Outcome variable: The variable in your data corresponding to
the feature of the world that you are trying to understand or explain with your
regression.

• Treatment variable: The variable in your data corresponding to the feature of
the world whose effect on the dependent variable you are trying to estimate.

• Control variable: A variable in your data that you include in your statistical
analysis in an attempt to reduce bias in your estimate of a causal effect.
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• Omitted variables bias: The bias resulting from failing to control for some
confounder when attempting to estimate a causal effect.

• Local average treatment effect (LATE): The average treatment effect for some
specific subset of the population.

Exercises

10.1 Download "HouseElectionsSpending2018.csv" and the associated
"README.txt," which describes the variables in this data set, at
press.princeton.edu/thinking-clearly.

(a) Run a regression of incumbent vote share (your dependent variable) on
both incumbent spending and challenger spending.
i. Note that if challenger spending is positively correlated with

higher challenger vote shares, it must be negatively correlated
with incumbent vote share. In light of this, how should we inter-
pret the estimated coefficients associated with your independent
variables?

ii. Are the results you obtained different from those you obtained
when you ran separate regressions of incumbent vote share on
incumbent spending and incumbent vote share on challenger
spending in chapter 9? Why or why not?

(b) Lets add some controls to your regression in an attempt to obtain more
reliable estimates of the effect of campaign spending. As you may know,
2018 was a good year for Democrats in House elections.

i. Is the overall good performance of Democrats in 2018 a
potential confounder in your regression?

ii. Create a new variable indicating whether the incumbent is a
Republican—call it republicanincumbent. It should take a value
of 1 if the incumbent is a Republican and a value of 0 if the
incumbent is a Democrat.

iii. Re-run your regression, but include that variable as a control.
iv. Interpret the estimated coefficient associated with your new

republicanincumbent variable.
v. Does including this control variable meaningfully change your

estimated coefficients of interest (i.e., the coefficients on incum-
bent and challenger spending)? Why or why not, do you think?

(c) Now add in a control for the vote share that the incumbents party
received in that district in the 2016 presidential election.

i. What kind of concern might including this control variable
address?

ii. Interpret the estimated coefficient associated with this control
variable,

iii. Does including this control variable meaningfully change
your estimated coefficients of interest (i.e., the coefficients on
incumbent and challenger spending)? Why or why not, do you
think?
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10.2 Produce a regression table that shows the results of each of the regressions
from exercise 1, along with the number of observations and the r-squared.

10.3 In chapter 2, we discussed a study that finds a correlation between taking
advanced math classes in high school and college completion, which the
researchers presented as evidence of a causal relationship. Of course, we might
worry that the kinds of students who take advanced math courses are different
from those who do not, so the authors of the study run regressions that con-
trol for gender, socioeconomic status, race, cognitive ability test scores, and
eighth-grade reading and math scores.
(a) Do these control variables assuage your concerns about potential

confounders?
(b) Even after controlling for these background variables, name a potential

omitted confounder that concerns you. What is the likely direction of
the bias associated with this potential confounder?

Readings and References
For more details on controlling, as well as more details on experiments, instrumental
variables, difference-in-differences, and regression discontinuity (topics we will cover
in the next three chapters), we recommend

Joshua Angrist and Jorg-Steffen Pischke. 2014. Mastering 'Metrics. Princeton Univer-
sity Press.

For more information on political polarization, including details on increasing
polarization in the U.S. Congress over the past seven or so decades, we recommend

Nolan McCarty. 2019. Polarization: What Everyone Needs to Know. Oxford University
Press.

For more on the LATE versus the ATE, including a defense of credible estimates of
a LATE, see

Guido W. Imbens. "Better LATE than Nothing: Some Comments on Deaton (2009)
and Heckman and Urzua (2009)." Journal ofEconomic Literature 48(2):399-423.

The study on Facebook and subjective well-being is
Hunt Allcott, Luca Braghieri, Sarah Eichmeyer, and Matthew Gentzkow. 2020. "The
Welfare Effects of Social Media." American Economic Review 110(3):629-76.
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Randomized Experiments

What You'll Learn

• Randomizing treatment can yield unbiased causal estimates.
• All the tools ofstatistical inference and hypothesis testing work in experimental

settings for adjudicating between genuine effects and noise.
• Even with a randomized experiment, numerous complications can arise and

must be planned around.
• When experimental subjects fail to comply with their experimental assign-

ment, it is important to make comparisons based on randomized assignment.
• Even when researchers can t implement their ideal experiment, sometimes they

can find instances in which their treatment of interest was randomized for non-
research purposes. Such "natural experiments,, are often fruitful, fortuitous
opportunities to answer important causal questions.

Introduction

We love regression, so we had a pretty good time with chapter 10. But we can see how
the message that you can basically never get unbiased estimates of causal relationships
just by controlling for confounders might be something of a downer. We are going to
try to make it up to you in the next three chapters. We'll do so by showing you that
there are better ways to learn about causality. Those ways are called research designs.
Using research designs to learn about causality often involves quite a bit of cleverness
and creativity. This makes research design one of the most fun topics you must master
in order to think clearly with data.

In this chapter, we consider the research design called a randomized experiment.
Randomized experiments are great because, if you can randomize treatment, there are
no confounders. So you can eliminate bias from your estimates. An analogy to ran-
domized experiments also helps to explain why the approaches we consider in the next
two chapters are called research designs. When you run a randomized experiment, you
literally get to design the way in which treatment is assigned.

In chapters 12 and 13, we will turn to other research designs that are a little less
"designy." In particular, those research designs are ways of trying to learn about causal-
ity from data that you observe in the wild—that is, where the world, rather than an
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experimenter, decided how treatment would be assigned. But before we go there, lets
spend some time learning about randomized experiments and how they work.

Breastfeeding
At the time of this writing, it is a virtual article of faith in the developed world that

babies should be breastfed. Consider, for example, this official statement from the World
Health Organization: "Adults who were breastfed as babies often have lower blood pres-
sure and lower cholesterol, as well as lower rates of overweight, obesity and type-2
diabetes. There is evidence that people who were breastfed perform better in intelli-
gence tests." Similarly, in 2011, the Surgeon General of the United States issued a call
to action to support breastfeeding, which she said is "one of the most highly effec-
tive preventive measures a mother can take to protect the health of her infant." The
accompanying report claimed that breastfeeding prevents a host ofchildhood scourges,
including ear infection, eczema, diarrhea, respiratory disease, asthma, obesity, type 2
diabetes, leukemia, and sudden infant death syndrome (SIDS). Indeed, an enormous
scientific literature documents the positive correlation between breastfeeding and good
health outcomes for children.

But before you jump to conclusions about the causal benefits of breastfeeding, con-
sider this fact. In developing countries, breastfeeding seems to be correlated with worse,
not better, health outcomes for children. In countries as diverse as Ghana, Kenya, Egypt,
Brazil, Peru, Bolivia, and Thailand, breastfeeding has been found to be correlated with
malnutrition and decreased height and weight.

What is going on? Is it possible that breastfeeding is good for kids in the industri-
alized world and bad for kids in the developing world? Maybe, but lets make sure we
are thinking as clearly as possible. You have already learned that correlation does not
necessarily imply causation. And in this case, the comparison of mothers who do and
do not breastfeed is most likely not an apples-to-apples one.

First, think about the developing world, where breastfeeding is negatively correlated
with children's physical well-being. One possibility is that breastfeeding causes these
adverse outcomes. Its also possible that some confounding factor, like poverty, causes
both breastfeeding and malnourishment. Breastfeeding costs a lot in terms ofa mother s
time, but it doesn't cost much money. Formula, by contrast, costs a lot ofmoney but less
time. So we might expect that economically distressed families are more likely to breast-
feed their children. And children from those same economically distressed families
may be more prone to health problems for reasons entirely unrelated to breastfeeding.
Reverse causality is also a concern. Perhaps adverse health in an infant directly leads a
mother to be more likely to breastfeed.

Indeed, confounding factors and reverse causality appear highly relevant in the
developing world. A 1997 study published in the International Journal of Epidemi-
ology tracked the health outcomes of 238 toddlers in a village in Peru. The study's
data included information on child size, breastfeeding, complementary food intake,
and diarrhea. The study found a negative correlation between breastfeeding and size—
children who were breastfed were smaller on average, suggesting they were in poorer
health. This relationship was strongest among those children who were getting the least
complementary food and were the most sickly. It turns out that, because breastfeeding
is widely believed to have health benefits, mothers whose children were sickly or lacked
access to complementary food weaned their children later. Consequently, children who
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were already sick and malnourished were more likely to be breastfed. Thus, the study
concludes, it is not breastfeeding that causes children not to grow in the developing
world. Rather, children who are not growing because they are sick and malnourished
are more likely to be breastfed.

Now think about the developed world, where parents are inundated with the message
that breastfeeding is good for their children. Remember, breastfeeding is said to reduce
the risk of heart disease, asthma, obesity, leukemia, SIDS, ear infections, and a host
of other ailments. Unfortunately, the evidence underlying this conventional wisdom
once again doesn't withstand much scrutiny. Surely you can think oflots of reasons why
comparing breastfed children to children who are not breastfed might not be an apples-
to-apples comparison. For instance, once official organizations issue statements on the
efficacy ofbreastfeeding, we would expect wealthy, educated mothers to be particularly
likely to hear this news and follow the advice. But their children were likely to have
better health outcomes anyway.

Breastfeeding or not is such a high-stakes decision, and so many different fac-
tors influence this decision, that it might be impossible to find an apples-to-apples
comparison out there in the world. However, perhaps we could generate our own
apples-to-apples comparison through a randomized experiment. A team of researchers
in Belarus tried to do exactly this.

The teams strategy was to run a randomized experiment. Clearly, for both ethical
and practical reasons, they couldn't force mothers to breastfeed or not, just for the ben-
efit of their study. But they could make it more likely that a randomly selected group
ofmothers would choose to breastfeed through randomly assigned encouragement. To
achieve this, in some randomly selected hospitals the researchers implemented a pro-
gram to encourage and facilitate breastfeeding. In other randomly selected hospitals,
they did not implement this program. For all the hospitals, they recorded how children
were fed and tracked a variety of the children's health (and other) outcomes over time.
And, indeed, mothers in the hospitals that had the breastfeeding program were much
more likely to breastfeed their newborns.

Despite the claims from the World Health Organization, the Surgeon General, the
American Academy of Pediatrics, and the parenting industry more generally, they
found surprisingly scant evidence for the large benefits breastfeeding is supposed to
provide. Babies from the hospitals that received the program were slightly less likely to
have eczema and gastrointestinal infections, but the researchers obtained null results
(i.e., no statistically significant evidence of effects of breastfeeding) for many more
outcomes. In a follow-up study, conducted when the children were between six and
seven years old, the investigators explored whether the children whose mothers were
encouraged to breastfeed performed better on any observable physical, psychological,
or cognitive outcomes. They found no evidence that breastfeeding provided bene-
fits in terms of the risk of eczema, allergies, asthma, obesity, emotional problems,
conduct problems, hyperactivity, or peer problems. Indeed, if anything, the evidence
went the other way, showing some limited evidence of a negative association between
breastfeeding and these outcomes. The one piece of evidence they found in support of
breastfeeding was that children from the hospitals that received the breastfeeding pro-
gram performed slightly better on IQ tests. But in thinking about this one finding, don't
forget the lessons about over-comparing we discussed in chapter 7. If you look at that
many outcomes, you're pretty likely to find at least one statistically significant finding
just because of noise.
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Overall, our view is that the experimental evidence is not nearly strong enough to
encourage every mother around the world to breastfeed. Although there are strong
correlations between breastfeeding and health outcomes in various settings, and some
reasonable arguments about the biological mechanisms through which breastfeeding
might work, the best available evidence suggests that the average effect ofbreastfeeding
is likely small. Without the power of randomized experimentation, it would be easy to
over- or under-estimate the benefits of breastfeeding.

Randomization and Causal Inference

What makes randomized experiments such a powerful tool for learning about causal
relationships? To start to see the answer, lets return to our discussion of potential
outcomes and Body Vibes.

Suppose we want to know the effect of some treatment, say Body Vibes, on some
outcome of interest, say skin health. In general, it is difficult to estimate the effect of
Body Vibes because of all the issues discussed in previous chapters. We want to know
how different a persons skin would be in the world in which they use Body Vibes versus
the world in which they do not use Body Vibes. Unfortunately, for any given person,
we only get to observe one of those potential outcomes. For example, if a person uses
Body Vibes, we can observe their skin health in that situation, but we don t know what
their skin would be like if they hadn't used Body Vibes.

If we just compared the average skin health of people who do and don t use Body
Vibes, that's not comparing apples to apples. That is, there are a variety of confounders
that imply that this difference in means is not an unbiased estimate of the average treat-
ment effect. For instance, perhaps those who use Body Vibes just care more about their
skin, and they also use more moisturizer and sunscreen. Or maybe the bias goes the
other way. Perhaps the people who use Body Vibes have bad skin, they've tried every-
thing else, and they're getting desperate. Either way, because of such confounders, we
can't get an unbiased estimate of the effect ofBody Vibes just by comparing the average
skin health of people who do and do not use them.

One way, perhaps the best way, to get rid ofthis bias and be sure that we're making an
apples-to-apples comparison is to randomize the treatment. Our comparison of those
using and not using Body Vibes is biased because these groups likely have baseline dif-
ferences. That is, on average, they would likely have different skin health even if none
(or all) of them used Body Vibes. However, ifwe randomly assign people to use or not
use Body Vibes, then those two groups would, in expectation, be the same in terms of
their pre-existing skin health and all other prior characteristics. That is, there would be
no confounders. Why is this the case?

If a treatment of interest is determined by the flip of a coin, a random-number
generator on your computer, or another random process, then the only thing that dis-
tinguishes people in the treated group and the untreated group is pure chance. There
is no reason why people in the treated group should be systematically taller, smarter,
richer, more motivated, or have better skin than those in the untreated group before we
deliver the treatment.

In terms of our potential outcomes notation, suppose we randomly assign some
group (the treated group T) to receive Body Vibes and another group (the untreated
group U) not to receive them. We observe the average skin health of the treated group
with Body Vibes, Y\t- And we observe the average skin health of the untreated group
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without Body Vibes, You- Thus, ifwe compare the average skin health in the two groups
we get the difference in means:

Yir-You

But, because of randomization, there are no systematic differences between either of
these groups and the population as a whole. Thus, the average skin health of the treated
group wearing Body Vibes is an unbiased estimate of the average skin health of the
whole population in the hypothetical world in which everyone wears Body Vibes:

?ir = ^i+Noisei

And similarly for the untreated group:

You = Yo + Noiseo

Hence, the observed difference in means is an unbiased estimate of the average treat-
ment effect,

Observed Difference in Means ATE

Yir-You = Y1-Y0 +Noise,

where this noise is just the difference of the two noise terms above.
As in the examples from previous chapters, noise can come from sampling variabil-

ity. Perhaps there's a broader population about which we care, and we happened by
chance to get an unusual sample of subjects in our experiment. It can also come from
measurement error. And now, when we're doing an experiment, noise also comes from
the random assignment of the treatment to subjects. Even for the same sample of sub-
jects, different randomizations could have produced different estimates, and this also
contributes to the noise.

Because of noise, for any small-scale experiment, there will be some differences in
average potential outcomes between the treated and untreated groups, just by chance.
But those differences wont be systematic—if we were to run many iterations of the
experiment, we would not expect to find the same pattern of differences repeated
over and over. This is what we mean by the phrase in expectation several paragraphs
above.

Think back to our favorite equation:

Estimate = Estimand + Bias + Noise

Randomization guarantees that the bias is zero. So noise is the only reason that
the estimate we get from comparing the mean outcome in the treated and untreated
groups in a properly randomized experiment differs from the true causal effect (i.e., the
estimand).

As we increase the number of subjects in any given experiment, we expect the two
groups to become more and more similar. That is, as the sample size gets big, the noise
becomes small.

Randomization gives you comparability of the treated and untreated group in
expectation—generating unbiased estimates. A large sample size gives you a very small
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amount of noise—generating precise estimates. So randomization plus a large sample
size gives you comparability in your actual, realized sample—generating estimates that
are very likely to be close to the true estimand.

If you think clearly about it, you'll realize that randomization is essentially the only
way to guarantee unbiased estimates of causal relationships. Suppose you tried to con-
duct an experiment, but instead of randomly assigning subjects to the treated and
untreated groups, you tried to carefully divide the groups so that they were as simi-
lar as possible to each other. Since you cant possibly observe and quantify all of your
subjects' relevant characteristics, you'd have to make some judgment calls. Maybe you'll
do this really well, and maybe you won't. What ifyour own subconscious biases lead you
to put slightly different people in the treated and untreated groups—perhaps because
you're subconsciously hoping the experiment will show a big effect? You'll have no way
of knowing whether you actually did a good job. Therefore, why take the risk? Why
not actually flip a coin and assign the treatment randomly? If this point seems obvi-
ous now, it wasn't obvious to a lot of smart people in the past. It's only since the work
of R. A. Fisher in the 1920s that scientific researchers have understood the value of
randomization.

There is one way in which this thought about trying to make the treated and
untreated groups as similar as possible on observable characteristics does make some
sense. As we know from our favorite equation, there are two ways our estimates might
differ from the true causal effect: bias and noise. Randomization eliminates bias. But

there could still be lots of noise, especially if the sample size is small or the experimen-
tal subjects are quite different from one another on characteristics that matter for the
outcome. That is, in any given iteration of an experiment, the treated and untreated
groups could end up looking very different in reality, even though they are the same in
expectation.

One thing you can do to reduce this problem is to start by grouping people on the
basis of their observable similarities. Then you can randomly assign individuals to be
treated or untreated within those groupings. This is called blocking or stratification. For
example, you might be concerned that men and women, on average, have very different
levels ofskin health. It would introduce a lot ofnoise into your experiment if, by chance,
you ended up with a treated group made up ofmostly men and an untreated group made
up ofmostly women, or vice versa. This won't happen in expectation (i.e., ifyou did the
experiment an infinite number of times, the average proportion of men and women
will be the same in the treated and untreated groups). But it could happen in any given
iteration of your randomization. To eliminate this source of noise, you could start by
dividing your experimental population by biological sex. Then you randomly assign
half the male group to be treated and half to be untreated, and likewise for the female
group. You'd still have randomized treatment assignment, so you'd still get unbiased
estimates. But you'd also have reduced the noise by making sure that your treated and
untreated groups were similar in terms of biological sex, not just in expectation but in
reality.

Extending this logic, an analyst could identify many different blocks or strata of sub-
jects with similar pre-treatment characteristics and conduct their randomization within
these strata or blocks. The most extreme version ofthis would be a matched-pair design,
where an analyst identifies pairs of individuals that they believe are most similar to
one another and for each pair randomly assigns one to be treated and the other to be
untreated. This can be a great way to improve the precision of one's estimates. But you
must make sure that the treatment is assigned randomly within each pair.
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Estimation and Inference in Experiments
In chapter 6, we discussed statistical inferences about relationships. All of those

lessons apply in the case of an experimental estimate as well. In the simplest scenario,
we can analyze the results of an experiment by calculating a difference in means—that
is, comparing the average outcome in the treated and untreated groups. In fact, as we
saw in chapter 5, if we regress the outcome on a binary measure of treatment status,
the regression coefficient associated with the treatment variable is just the difference in
means. And since regression coefficients and differences in means are just quantitative
relationships, we can apply all of the statistical tools of chapter 6 to experiments as well.

Standard Errors

Suppose we conduct a randomized experiment and estimate the average treatment
effect by comparing the average outcome for subjects with the treatment to the average
outcome for subjects without the treatment. This estimate is unbiased. But it might be
imprecise (i.e., there may be lots of noise).

We'd, of course, like to know how close our estimates are to the true effect of interest
(i.e., the estimand). We can estimate the standard error associated with our experi-
mental estimate just like we estimated the standard error of poll results and regression
coefficients in chapter 6. The standard error gives us a sense ofhow far, on average, our
estimate would be from the truth as a result of noise ifwe repeated our experiment an
infinite number of times, each time using the same procedure to generate an estimate
of the treatment effect. Similar to our discussion ofpoll results, the true standard error
depends on quantities that are unobservable, but there are various approximations that
practitioners use for estimating the standard error.

You don t need to memorize formulas for standard errors; you can always look them
up or just let your computer calculate them for you. Nonetheless, its useful to think
about how various features of experiments influence the amount of noise. Suppose we
conduct an experiment with N subjects, of whom m receive the treatment and N — m
do not. All else equal, the greater N is, the less noise and, thus, the smaller the standard
error. This should be intuitive. When the sample size is larger, the treated and untreated
groups will be more similar to each other with respect to other characteristics, reducing
noise, and making our estimates closer to the true causal effect.

What about m? Suppose we have five hundred people in our study. How many of
them would we like to put in the treated group and in the untreated group? Obvi-
ously, we cant put all of them in either group because then we wouldn't be able to
make a comparison (remember that correlation requires variation). Extending that
logic, we can see that we don't want too few subjects in either group. If either the
treated group or the untreated group is very small, then our estimates will be impre-
cise because the average outcome for whichever group is small will be quite sensitive
to the idiosyncratic features of just a few subjects. Typically, then, you'll get the most
precise estimates when the sizes of the treated and untreated groups are roughly
equal.

With that being said, there are often cases where an optimal experimental design
might have different numbers of subjects in each condition. Suppose you have 100,000
potential subjects. You only have enough resources to put 100 people in your treated
group, but it's costless to put more subjects in your untreated group. You might as
well randomly assign 100 people to the treated group and everybody else to the
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untreated group. Your estimates wont be nearly as precise as if you had 50,000 people
in each group, but they'll be much more precise than an experiment with 100 people in
each group.

The last factor that influences the noisiness ofexperimental estimates is how variable
the outcome is in both the treated and untreated groups. Ifwe study outcomes with little
variance within each treatment condition, our estimates will be more precise than ifwe
study outcomes with greater variance. This is because, if the outcome doesn't vary much
based on non-treatment characteristics, then there is very little scope for noise—we'll
get similar outcomes for each group across iterations of the experiment. This is why, for
example, doctors and government regulators often have precise estimates of the effect
of some heart medication on blood pressure (a relatively low variance outcome) but
imprecise estimates of the effect of the same drug on heart attacks (a high variance
outcome). Of course, sometimes, we have no control over this. The outcome of interest
is what it is. And sometimes the most interesting or important outcomes (e.g., heart
attacks) are high variance. But other times it might be possible to identify outcomes or
methods for measuring those outcomes that reduce noise.

Hypothesis Testing
We can also apply the tools of hypothesis testing that we learned in chapter 6 to

experimental results to assess statistical significance. For instance, dividing the estimate
by the standard error generates a value called a t-statistic, which can be used to estimate
a p-value. And because we often do hypothesis testing with experimental results, we
need to keep thinking clearly about the risks of over-comparing, under-reporting, and
reversion to the mean. Recall from chapter 7 that analysts can reduce these risks by
stating up front the questions of interest the experiment is designed to address, pre-
specifying the hypotheses they plan to test and regressions they plan to run (so they can't
just go fishing for a statistically significant finding), and reporting the results regardless
ofwhat they find.

We should also interpret experiments with these issues in mind. If analysts are not
transparent about the steps they took to avoid over-comparing and under-reporting,
we should be skeptical of their findings. And, the more surprising the findings, the
more skeptical we should be. Remember that the ESP result arose in an experimental
study! Or, more seriously, think again about the breastfeeding experiment with which
we began this chapter. That study had many virtues. But one potential problem is that,
because the study designers collected information on so many outcomes, when we see
no evidence of an effect of breastfeeding on eczema, allergies, asthma, obesity, emo-
tional problems, conduct problems, hyperactivity, or peer problems, but we do see an
effect on IQ, we are worried that the apparent effect on IQ arose just by chance.

Problems That Can Arise with Experiments
Things rarely work as beautifully in practice as they do in our idealized examples.

In theory, you can design a randomized experiment and estimate the average treatment
effect simply by comparing means. In practice, however, problems arise that make anal-
ysis and interpretation less straightforward. Let's discuss some of those problems and
the ways in which careful analysts can deal with them. Thinking about these issues now
will have benefits beyond the context of experiments because these problems can arise
for virtually any strategy for estimating causal relationships.
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Noncompliance and Instrumental Variables
One common problem in experiments is that subjects fail to comply with their

assigned treatment. We call this noncompliance. For instance, it is pretty common in
medical studies for some subjects to simply stop taking their medication. There was
also noncompliance in the breastfeeding experiment. Recall, because it is unethical to
force a mother to breastfeed or not, the researchers randomly assigned mothers into
groups where they received more or less encouragement to breastfeed. Encouragement
designs like this allow researchers to experimentally study lots of topics that would oth-
erwise be off-limits for logistical or ethical reasons. But such studies inevitably involve
the additional complications that arise from noncompliance, since surely some mothers
who were encouraged nonetheless did not breastfeed and some mothers who were not
encouraged did breastfeed.

Suppose we designed a randomized experiment to estimate the effect of Body Vibes
on skin health. We randomly assign some individuals to the treatment condition—we
give them Body Vibes and, for the sake of science, try to convince them to wear them.
We also randomly assign some individuals to an untreated condition—they are given
no Body Vibes and told to go about their normal lives. Then, despite our best efforts,
some of the subjects in the treated group forget or simply refuse to wear their Body
Vibes. And amazingly, a few of the more gullible members of the untreated group hear
about Body Vibes elsewhere, spend their hard-earned money on the product, and wear
them. Shoot! What do we do?

One idea would be to simply compare people who did and didn't wear Body Vibes,
ignoring whether each subject was initially assigned to the treated or untreated group.
But this wont work. It brings us right back to the problem we were trying to solve
through our randomized experiment. The people who voluntarily wear or do not wear
Body Vibes are likely different from one another, so a comparison of those two groups
is not apples-to-apples.

Another idea would be to drop the subjects that did not comply with their treatment
assignments. In other words, we could remove from our analysis the people who were
assigned to the treated group but didn't wear Body Vibes and the people who were
assigned to the untreated group but did wear them. After doing that, we might just
proceed as normal, comparing the mean skin health among the remaining members of
the treated and untreated groups.

Unfortunately, this is still not an adequate solution. To see why, think about the peo-
ple who were in the treated group but refused to wear Body Vibes. They might be special
in important ways—for example, they may have better skin health or be less gullible.
Presumably, there were also people just like them in the untreated group. But, because
we didn't ask those people to wear Body Vibes in the first place, we can't figure out
who they are. So we can't similarly remove them from the untreated group. Thus, ifwe
throw this group of people out of the treated group, the comparison of the treated and
untreated groups will no longer be apples-to-apples. The kinds ofpeople who wouldn't
wear Body Vibes even ifgiven to them would be present in the untreated group but not
the treated group.

So what can we do in light of noncompliance? Well, one thing we can always do is
estimate the effect of being assigned to the treated group (as distinct from the effect
of the treatment itself). We sometimes call this the intent-to-treat (ITT) effect or the
reduced-form effect. We do this by comparing the outcomes for the people assigned to
the treated and untreated groups, regardless ofwhether they actually comply with their
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treatment assignment. This comparison wont give us an unbiased estimate of the effect
of wearing Body Vibes. But it will give us an unbiased estimate of the effect of being
given Body Vibes and encouraged to wear them.

There are situations where a policy maker or decision maker actually cares more
about intent-to-treat effects than actual treatment effects. Suppose a charitable organi-
zation is trying to decide whether it should provide free Body Vibes to high school kids
with bad skin. They know that not everyone provided with Body Vibes will wear them.
Furthermore, all they can do from a policy perspective is provide the Body Vibes; they
cant force anyone to use them. They conduct an experiment to estimate the benefits
of free Body Vibes. What quantity should go on the benefits side of their cost-benefit
analysis to inform them about whether this is a good policy? Its not the average effect
of Body Vibes for an individual who uses them. Its the average effect of being pro-
vided Body Vibes, regardless of whether an individual uses them or not, since this is
what the charitable organization can actually do. So the intent-to-treat effect is the rel-
evant number. More seriously, in many settings, all a policy maker or organization can
do is provide a service; they cant force people to take it up. In any such situation, the
intent-to-treat effect may in fact be the most important quantity.

In other situations, however, we are interested in the actual effect of the treatment,
not just the intent-to-treat effect. Suppose, for instance, that we're trying to decide
whether we should wear Body Vibes ourselves. Or, more seriously, suppose someone is
deciding whether to try an experimental medical treatment, a new study regimen, a new
teaching technique, or a new productivity-enhancing management strategy. In those
cases, we want to know more than just the intent-to-treat effect. We want to know the
likely effect of taking up the treatment. So what more can we do with our experimental
results, plagued as they are by issues of noncompliance?

To make some additional progress, lets think about the different ways a subject can
respond to our experimental encouragement to wear or not wear Body Vibes. Our
sample consists of up to four different kinds of people.

1. There are compliers, who will wear Body Vibes if they're assigned to treatment
and will not wear them if they're not assigned to treatment.

2. There are always-takers, who will wear Body Vibes regardless of whether or
not they are assigned to treatment.

3. There are never-takers, who will not wear Body Vibes regardless ofwhether or
not they are assigned to treatment. (We are both never-takers when it comes
to Body Vibes.)

4. And, in principle, there could be a perverse group of defiers, who won t wear
Body Vibes if they're in the treated group but will wear Body Vibes if they're
in the untreated group.

Obviously, when we do an experiment, we're hoping for lots of compilers. The whole
idea of an experiment is that we want to randomly assign treatment, and the compilers
are those subjects who are willing to let us do that.

Every subject in an experiment fits neatly into one (and only one) of these categories.
However, we can't just look at our experimental subjects and figure out which peo-
ple are compilers, always-takers, never-takers, or defiers. Why is that? Suppose we see
that someone is in the untreated group and doesn't wear Body Vibes. We know that
they are either a compiler or a never-taker. But we have no way of knowing which,
because we don't know whether they would have worn Body Vibes if they were in
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Table 11.1. Who takes the treatment in a Body Vibes experiment?

Treated Group Untreated Group

Wore Body Vibes Compliers & Always-Takers Always-Takers & Defiers
Didn't Wear Body Vibes Never-Takers & Defiers Compliers & Never-Takers

Table 11.2. Who takes the treatment in a Body Vibes experiment, assuming there are only compliers
and never-takers?

Treated Group Untreated Group

Wore Body Vibes Compliers N/A
Didn't Wear Body Vibes Never-Takers Compliers & Never-Takers

the treated group. Table 11.1 illustrates this issue more generally for our Body Vibes
experiment.

Dividing people up into these groups helps us think clearly about when we are or
are not making an apples-to-apples comparison. In particular, in order to ensure that
we don t have confounding, we want the groups we compare (say, treated and untreated
groups) to have the same share of compliers, always-takers, never-takers, and defiers.

To get a sense of how this helps us understand the problem, let's start by assuming
that everyone is either a compiler or a never-taker. In other words, none of those peo-
ple who might buy and wear Body Vibes on their own happened to participate in our
experiment. (We'll relax this in a bit.) Table 11.2 shows what our experiment looks like
in a world with only compliers and never-takers.

Now let's revisit the various ways we might deal with experimental subjects who
don't behave according to their treatment assignment. It's easy to see why we can't just
compare people who did and didn't wear Body Vibes, ignoring their treatment assign-
ment. The group that wears Body Vibes is made up of just the compliers in the treated
group. The group that doesn't wear Body Vibes is a combination of the compliers in the
untreated group, the never-takers in the untreated group, and the never-takers in the
treated group. So the comparison of Body Vibes wearers to non-Body Vibes wearers is
not apples-to-apples.

Similarly, it's easy to see why we can't just drop the people who visibly don't comply
with our experiment. We would drop the never-takers from the treated group. But we
wouldn't drop anyone from the untreated group. As a result we'd be comparing the com-
pliers from the treated group to a combination of the compliers and the never-takers
from the untreated group—again, not an apples-to-apples comparison.

It seems like we're still stuck in a place where all we can do is compare the treated and
untreated groups, estimating the intent-to-treat effect. But, actually, we can do better.
Let's see how.

A key step in doing better involves estimating the proportion of compliers in our
sample. We don't know exactly who the compliers are. But, in our simplified example
with only compliers and never-takers, we can estimate what proportion of the sample
is compliers. We do so by calculating the proportion of the treated group that takes up
the treatment. This is the proportion of compliers in the treated group. And, because
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Table 11.3. Observed differences between the two experimental groups.

People Assigned to Be Treated People Assigned to Be Untreated

Average Skin Health 7.8 6.2

of random assignment, the treated and untreated groups have the same proportion of
compilers in expectation. Therefore, the proportion of compilers in the treated group
is an unbiased estimate of the proportion of compilers in the whole sample (i.e., the
treated group and untreated group combined).

We now have unbiased estimates of both the intent-to-treat effect (by comparing
the average outcomes in the group assigned to be treated and the group assigned to be
untreated) and the proportion of compilers in the sample. How does that help us?

We want to know the effect of Body Vibes on some outcome like skin health. If we
assume that the only way that treatment assignment could have influenced skin health
is through the actual use of Body Vibes, then what is the intent-to-treat effect? Under
our assumption, the never-takers were not affected by the treatment assignment, and
the effect of the treatment assignment for the compilers is just the effect of Body Vibes.
So the expected intent-to-treat effect is the average effect of Body Vibes for compilers
times the proportion ofcompilers in the sample. That means ifwe divide the ITT effect
by our estimate for the proportion of compilers, we'll have an unbiased estimate of the
average effect of the treatment for compilers.

Let s do a little example to see how this works. Imagine that Body Vibes actuallywork.
(Remember, a lot of this book is about counterfactual worlds.) In particular, suppose
that you could measure skin health on a scale of 1-10, with 10 being perfect skin and 1
being very bad skin.

Now lets imagine we conducted an experiment on 100 people to study the effects of
Body Vibes. We randomly assigned 50 people to receive the treatment and 50 people
not to. The people assigned to receive the treatment got Body Vibes. The other people
did not. A month later, we measured the skin health of each person on our 1-10 scale.
Suppose the data looked like that in table 11.3.

Our estimate from the data of the intent-to-treat effect is 1.6—that is, on average,
people given Body Vibes had a skin health score that was 1.6 points higher than people
not given Body Vibes.

You dig a little deeper and discover that, while no one in the group assigned to be
untreated went and bought Body Vibes, only 40 of the 50 people assigned to treatment
wore them. From this you estimate that the proportion of compilers in your sample is
80 percent (|jj) and the proportion of never-takers in your sample is 20 percent. You
can now estimate the true effect of Body Vibes on the compilers.

How does this work? To make sure we are thinking clearly, let's return to our potential
outcomes notation. Let Yoc be the average skin health of a compiler without treatment
(i.e., without Body Vibes); let Y\c be the average skin health ofa compiler with treatment
(i.e., with Body Vibes); and let Yo« be the average skin health of a never-taker without
treatment. Given that we have 80 percent compilers and 20 percent never-takers, we
have the following two equations:

7.8 = 80%-Yic + 20%-Y0«

6.2 = 80%-Yoc + 20%-Y0«
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The first equation says that the average skin health for those assigned to the treated
group (7.8) is a weighted average of the average skin health ofcompilers with treatment
(with weight 80%) and of never-takers without treatment (with weight 20%). Similarly,
the average skin health for those assigned to the untreated group (6.2) is a weighted
average of the average skin health of compilers without treatment (with weight 80%)
and of never-takers without treatment (with weight 20%).

We can subtract the left-hand sides of these two equations from one another and the
right-hand sides of these two equations from one another to get

1.6 = 80%. (Yic-Ybc).

The left-hand side is the intent-to-treat effect: the difference in average outcomes
between the group assigned to be treated and the group assigned to be untreated. On
the right-hand side, "80%" represents the proportion of compilers in the sample. And
the term in parentheses is the average effect of the treatment for compilers (usually
called the compiler average treatment effect or CATE). So, we can recover the compiler
average treatment effect by dividing both sides by 80 percent:

CATE

= 2.

It is important to note the distinction between the compiler average treatment effect
and the overall average treatment effect. It is possible that wearing Body Vibes has the
same effect on skin health for everyone. In this scenario, we would say that there are
homogeneous treatment effects. But this need not be the case—Body Vibes could dif-
ferentially affect the skin health of different people, and the average effects might be
quite different for the kind ofperson who would never use them (never-takers) and the
kind of person who uses them if encouraged (compilers). In this case, we say there are
heterogeneous treatment effects. As the algebra above shows, dividing the intent to treat
effect by the share of compilers estimates the compiler average treatment effect. If there
are homogeneous treatment effects, the compiler average treatment effect is the same
as the overall average treatment effect. But if there are heterogeneous treatment effects,
they are not the same and we have to keep in mind that we are only able to estimate
the average treatment effect for this specific subgroup. The intuition for why is straight-
forward. It is only the compilers who are actually changing their behavior in response
to treatment. So they are the only part of the population about whom we are actually
gaining information.

It was relatively easy to see how all this works in a simplified world where everyone
was either a compiler or a never-taker. But we can do the same basic thing even if we
move away from this simplified world and also allow for the possibility ofalways-takers.
For now, lets continue to assume that there are no defiers, because they muddy the
waters. (There are lots ofsituations, including this hypothetical Body Vibes experiment,
where we think that there will be few to no defiers.)

Table 11.4 shows how different types of subjects appear in our experimental sample
in this more complicated world.

How do we estimate the proportion of compilers when there are compilers, never-
takers, and always-takers? First, the people in the group assigned to be treated who
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Table 11.4. Who takes the treatment in a Body Vibes experiment, assuming there are no defiers?

Treated Group Untreated Group

Wore Body Vibes Compliers & Always-Takers Always-Takers
Didn't Wear Body Vibes Never-Takers Compliers & Never-Takers

actually wear Body Vibes are either compliers or always-takers. So the size of this group
gives us an estimate of the proportion of always-takers plus compliers. Second, the
people in the group assigned to be untreated who wear Body Vibes are definitely always-
takers. So the size of this group gives us an estimate of the proportion of always-takers.
By subtracting this second number from the first, we get an estimate of the proportion
of compliers. With that in hand, we can again proceed as above—calculating the ITT
effect and dividing it by the share of compliers to get the CATE.

Therefore, our general procedure for estimating the compiler average treatment
effect is as follows. First, estimate the ITT effect—that is, the effect of being assigned
to the treated group on the outcome of interest. Second, estimate the effect of being
assigned to the treated group on the actual take-up of the treatment. This is some-
times called thefirst-stage effect. Assuming there are no defiers, this gives us an unbiased
estimate of the proportion of compliers. We then recover an estimate of the CATE by
dividing the intent-to-treat effect by the proportion ofcompliers. This ratio is called the
Wald Estimator, after the statistician Abraham Wald, who first developed it, though in
a different context.

The Wald Estimator is a special case of what is called instrumental variables (IV)
analysis. This kind of analysis is appropriate when the treatment of interest is not ran-
domly assigned but there is some other variable (called an instrument) that (1) affects
the treatment of interest, (2) does not affect the outcome of interest except through the
treatment, and (3) is randomly assigned (or, there is some other way to credibly estimate
its effect on the treatment and the outcome).

To be more precise, there are four key conditions that must hold for IV analysis to
work:

1. Exogeneity: The instrument must be randomly assigned or be "as if" randomly
assigned, allowing us to obtain unbiased estimates of both the first-stage and
reduced-form (ITT) effects.

2. Exclusion restriction: All of the reduced-form effect must occur through the
treatment. In other words, there is no other pathway for the instrument to
influence the outcome except through its effect on the treatment. If this isn't
the case, then the reduced-form effect includes both the effect of the treatment
on the outcome for compliers and these other pathways. Then, even after we
divide by the first-stage effect, the resulting estimate still includes these other
pathways and, thus, does not reflect the CATE.

3. Compliers: There must be some compliers.
4. No defiers: Ifthere are defiers, then our estimate will give us a weighted average

of the average effect for compliers and the average effect for defiers, but with
the defiers getting negative weight (since their behavior changed in the wrong
direction). How big a problem the presence ofdefiers is depends on how many
of them there are and how different the treatment effects are for compliers
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and defiers. If there are very few defiers, then the bias that comes from their
presence is negligible. But if there are many defiers, they are a big problem for
the IV analysis.

In the case ofour Body Vibes experiment, the experimental assignment to be treated
or untreated was an excellent instrument. It clearly satisfied exogeneity because we ran-
domized treatment. It also seems unlikely that being assigned to the treated group had
any way of affecting skin health other than through Body Vibes, so it quite plausibly
satisfied the exclusion restriction. So, as long as there were compilers (i.e., people who
actually used the Body Vibes because they were assigned to) and no defiers, our analysis
yielded an estimate of the compiler average treatment effect.

There are more flexible ways to implement IV analysis than the Wald Estimator. In
particular, it can be implemented using regression, which is important because that
allows us to accommodate control variables, if necessary, as well as situations with
multiple instruments or treatments and instruments that are not binary.

Some analysts think of IV as a method or research design unto itself. For exam-
ple, an analyst might implement our design above and say that they estimated the
effect of Body Vibes using instrumental variables. That's technically true but mislead-
ing. The important research design in our example is the randomized experiment. We're
using instrumental variables to deal with noncompliance, acknowledging the additional
assumptions (above and beyond randomization) that doing so requires. In particular,
the exclusion restriction is defensible in our example because all the experiment did was
hand out stupid stickers to some people and not to others. In other contexts, however,
the exclusion restriction will be harder to justify and will require a lot of thought. We
will return to this later, when we discuss natural experiments.

Chance Imbalance

Randomization guarantees that the treated and untreated groups are, in expectation,
the same in terms of potential outcomes. But the term in expectation is important. Just
because two groups are the same in expectation doesn't mean they are the same in actu-
ality. As we've discussed, in any given experiment, the treated group could differ from
the untreated group in lots ofways, just due to chance, and we might call this a chance
imbalance. This is why there is a noise term, in addition to a bias term, in our favorite
equation.

Experimenters often assess the balance between their treated and untreated groups
by comparing them in terms of measurable pre-treatment characteristics. For example,
in our Body Vibes experiment, we could compare the average age, gender, weight, diet,
and skin health ofthe subjects in the treated and untreated groups before the treatments
are delivered. We could even test for statistically significant differences. The hope, of
course, is that we don't find any differences. Ifwe do, we must worry that, even though
our estimate is unbiased, it might nonetheless be quite different from the true effect
because of noise.

What should a careful analyst do if, despite randomization, the treated and untreated
groups turn out to differ in substantively or statistically significant ways? Let's consider
three potential responses.

1. Throw out the "broken" experiment. You had good intentions when you ran
the experiment, but you got unlucky and now you can't trust your results, so
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you should just forget the experiment and move on. Maybe you should do
another one and hope for better balance.

We think this is an inappropriate response. Remember the problem ofover-
comparing. If you test for balance on enough pre-treatment variables, you are
virtually guaranteed to find statistically significant imbalance on some ofthem.
Therefore, by this logic, the more pre-treatment variables you can measure,
the more likely you are to have to throw out the experiment, which seems per-
verse. Moreover, even "broken" experiments contain information. Importantly,
they are unbiased (remember, bias is about getting the answer right on average,
across lots of iterations of the experiment). And, so, the information could be
pooled with other evidence (perhaps from other iterations of the same experi-
ment) and incorporated into a larger analysis that will ultimately contribute to
knowledge.

Our response here assumes that the analyst is confident that the treatment
was indeed randomly assigned. Our recommendations would change if this
wasn't the case. Suppose you (or your computer) didn't do the randomiza-
tion directly Instead, suppose you were running a large-scale experiment and
the randomization was implemented by a big team or by a partner organiza-
tion. In a situation like this, if you detect enough imbalance, you might start
to worry that your planned randomization wasn't faithfully implemented. In
that case, throwing out the experiment (probably following some investigation
into whether your suspicions are well founded) could be appropriate.

2. Proceed as normal. Unbiasedness is a property in expectation, so the experi-
mental estimate is still unbiased. You could report the imbalance for the sake
of transparency while still estimating the treatment effect as you originally
planned. Of course, the treated and untreated groups are sometimes different
by chance. That's exactly why we report standard errors or other measures of
noise.

This strategy may seem unsatisfying. As you'll recall from chapter 6 and our
favorite equation, even an unbiased estimate can be very far from the truth.
When we find an imbalance between the treated and untreated groups that
we think is strongly related to the outcome of interest, we might worry that
this chance imbalance reflects getting one of those draws of our procedure
that result in an estimate that is far from the truth, despite the absence ofbias.
Nonetheless, there is still some merit to proceeding as planned and reporting
your unbiased (if probably quite wrong) estimate. This is especially the case if
we are talking about the kind ofexperiment that will be replicated lots oftimes,
so that the lack of balance in any one iteration will be washed out in the long
run through averaging across many iterations of the experiment.

But we also might wonder whether there is some way that we can account
for the imbalance and generate an estimate that is likely to be closer to the right
answer right now—which leads us to our third possible response.

3. Use the techniques discussed in chapter 10 to control for any unbalanced
variables. As we learned in chapter 10, controlling for pre-treatment variables
could improve precision by accounting for the variance in the outcome that is
due to those variables. This is the sense in which controlling may help you get
closer to the truth. But it has disadvantages as well. Because of randomization,
you can be sure that estimating the treatment effect without controlling (e.g.,
just comparing the average outcome in the treated and untreated groups) leads
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to an unbiased (if potentially very far from correct) estimate of the true effect.
By contrast, controlling for variables after the fact can produce a biased (ifmore
precise) estimate. This means that if you were to run your experiment lots of
times and always control for whatever variables turn out to be imbalanced, the
average of your estimates might not converge on the true effect. So there are
trade-offs to think about between reducing noise and increasing bias.

Another concern with this approach is that by controlling for pre-treatment
variables, the researcher is exercising additional degrees offreedom that should
raise concerns about over-comparing and under-reporting. As we learned in
chapter 7, savvy consumers should be skeptical when they see an analyst play
around with their specification, and if an experimental result depends upon a
particular set of control variables that were not necessitated by the design, we
probably shouldn't have much faith in that result.

There is no easy answer or quick fix to the problem posed by chance imbalance fol-
lowing randomization. Our view is that you should probably do some combination
of options 2 and 3. Also, whenever feasible, you should try to replicate experiments
multiple times. No matter what, be honest and transparent about the choices you make.

Ofcourse, what we'd really like is to avoid these difficult decisions by avoiding chance
imbalance in the first place. And there are ways to do this. If you can identify and
measure important characteristics ahead of time, you can design your experiment to
ensure balance. We've already briefly mentioned how—by using a blocked or strati-
fied experimental design. Prior to treatment, divide your sample into groups based on
those characteristics and then randomize within those groups. Recall that earlier in
this chapter we suggested that you might be concerned that Body Vibes differentially
affect men and women, so you want to make sure your treated and untreated groups
are balanced by biological sex. You achieve this by first dividing your sample into a
male group and a female group. Then you randomize treatment assignment within
these groups. This guarantees that biological sex is balanced between the treated and
untreated groups (reducing noise), while still assigning treatment randomly (preserv-
ing unbiasedness). We can save ourselves a lot of headaches by following a procedure
like this for pre-treatment characteristics that would cause us concern if they turned
out to be imbalanced after the fact.

Lack of Statistical Power

Sometimes, an otherwise excellent experiment yields inconclusive results because
the standard error is so large that we don't learn much, and even a reasonably sized effect
would not be statistically distinguishable from zero. In this case, we say that the experi-
ment lacked the statisticalpower to detect the effect of interest. Ideally, an experimenter
would think about this problem beforehand and take steps to improve the precision and
statistical power of the experiment—for instance, by increasing the sample size.

That said, sometimes, because of costs or other constraints, it turns out that you've
run an underpowered experiment. If you've already run the experiment and obtained
imprecise estimates, what can you do? Here, the debate mirrors that around chance
imbalance. You can try to improve precision by controlling for some variables, but, as
we've already discussed, that has downsides. Sometimes, you may just have to accept
that you don't have a convincing answer to your question and you haven't learned much,
even after running an experiment.
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Thinking back to chapter 7, you might be wondering whether burying the results
of an underpowered experiment contributes to the file-drawer problem. The answer is,
yes. And this is a good reason not to run underpowered experiments. But if the results
of an experiment are so imprecise that we learn virtually nothing, there isn't much use
publicizing them. So failing to publish because an experiment didnt teach us much
is not nearly as detrimental to the scientific process as failing to publish because an
experiment didnt give the desired result.

Attrition

Sometimes people drop out ofan experiment after treatment assignment. Such attri-
tion is importantly different from noncompliance. Noncompliance involves people who
were supposed to take up the treatment but chose not to. At least we get to observe the
outcome for these noncompliers. When people drop out of the experiment, we don t
even get to observe their outcome.

Suppose, for example, that Body Vibes make some people feel so young and care-
free that they forget to come back for their follow-up meeting where we were planning
to measure their skin health. This is bad. If attrition happens at random (i.e., is unre-
lated to the treatment or the potential outcomes), then we can still obtain an unbiased
estimate of the effect of our treatment by comparing the remaining members of the
treated and untreated groups. We just lose some statistical power because our sam-
ple got smaller. If attrition is nonrandom but unaffected by the treatment assignment,
then we can at least estimate the average effect of the treatment for the kind of peo-
ple that choose to remain in the experiment. This is a genuine effect, but weVe kind
of changed the question. And, of course, most of the time, if there is attrition, we're
left worrying that the attrition is both nonrandom and influenced by the treatment.
For instance, maybe people leave the study because Body Vibes work so well that they
stop worrying about skin health entirely. In that case, were we to compare the remain-
ing members of the treated and untreated groups, we'd be getting a biased estimate of
the effect. (This is the sort of thing that can easily happen in a medical study if the
researchers aren't careful.) As with many problems, it's much better if you can antic-
ipate and mitigate attrition at the design stage rather than try to account for it after
the fact.

If attrition is unavoidable, what should an analyst do? First, you can test whether
the experimental treatment influenced the rate of attrition. If it did, then we know we
no longer have an apples-to-apples comparison. And relatedly, you can see whether the
treated versus untreated units that remained in your sample differ systematically on
other covariates that might be related to the outcome.

If you have reason to think the treatment did affect the kinds of respondents
that attrited, what can you do? Do we just have to throw out the experiment? Not
necessarily—there is one last resort that doesn't require the analyst to make any assump-
tions about the nature of attrition. You can try to bound the extent of the bias arising
from attrition.

To see how this works, imagine an experiment with a binary outcome (1 = healthy
skin, 0 = unhealthy skin). Suppose that 50 percent ofthe subjects in both our treated and
untreated groups appear to have healthy skin, suggesting no effect of Body Vibes, but 5
percent of subjects in each group never showed up to have their skin health measured.
We don't know whether attrition was affected by the treatment. But we can ask how bad
the bias could be if it was.
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The best-case scenario for the hypothesis that Body Vibes are good for skin health
would be if all of the people in the treated group who didnt show up had good skin
and all of the people in the untreated group who didnt show up had bad skin. In that
scenario, 52.5 percent of subjects in the treated group would have good skin health
compared to 47.5 percent in the untreated group, implying a positive effect of Body
Vibes on skin health of 5 percentage points. Alternatively, in the worst-case scenario
for this hypothesis, those numbers would be flipped, and there would be a negative
effect of 5 percentage points. We can t be sure that attrition doesn t bias our estimates,
but we can say that the bias can t possibly be greater than 5 percentage points.

Interference

Interference occurs when the treatment status of one unit affects the outcome of
another unit. This can bias the results of an experiment. To see what we mean, con-
sider the following story we heard from our colleague, Chris Blattman, about a pilot
study for an experiment he ran in Liberia.

Blattman was interested in understanding what kinds of interventions might help
young men at high risk for engaging in crime or violence in post-conflict settings. In
particular, he was trying to evaluate the impact of two kinds of interventions: offering
young men small cash grants to start an income-generating business and offering them
cognitive behavioral therapy.

One thing you might do, if you were interested in whether either of these two
approaches works, is to start an organization offering each of them. You could then
compare those who received either (or both) of these interventions to those who didnt,
to see if those who received them did better in some important way.

Such an approach, however, would fail to compare apples to apples. It could well be
that the young men who self-select into receiving grants or therapy are already different
from the average young man in the sample. They might be more ambitious, healthier,
smarter, or what have you. Thus, it would be a mistake to attribute the entire difference
in performance between those who received the grants or therapy and those who didn t
to the causal effect of the intervention.

To address these concerns, Blattman designed a randomized experiment in which
he randomly assigned the different interventions to different groups of Liberian young
men. Everyone would be given a small fee just for participating in the experiment. Then,
some participants would get nothing more (the untreated group), while among the
remaining participants, some would get a cash grant of about $200, some would get
therapy, and some would get both a grant and therapy.

Blattmans plan was to compare levels of crime and homelessness among the young
men assigned to different groups. The idea was that if the young men receiving one
of the treatments had better outcomes than the untreated group, this would constitute
apples-to-apples evidence that the intervention had a positive impact. So far, so good.

The problems started when the young men in the study found out that about half
of them would receive $200 while the others would not. They explained that they did
not want to play this lottery. They would prefer to each receive $100, eliminating any
risk of getting nothing. Of course, giving them each $100 would ruin the experiment.
After all, the purpose was to randomly give some more than others and see whether
those who received more actually did better. So Blattmans team dispensed the cash
grants as per their experimental protocol—randomly giving only half the participants
the $200.
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But these young men were one step ahead of the researchers. They seemed to have
reached an understanding that they would provide one another with a sort of insurance.
As a result ofthis insurance agreement, the winners ofthe lottery each gave some oftheir
money to the losers, who had received nothing. This kind ofinterference biased the esti-
mates that came out of the experiment, since now the carefully constructed untreated
group had in fact received some of the treatment and the carefully constructed treated
group had given up some of the treatment.

Here we see how hard it can be to design a clean experiment. Sometimes your
experimental subjects or another outside force will undo your efforts.

Blattmans failed pilot is a clear example of interference. When you design an experi-
ment, you randomly assign a treatment of interest across different units of observation
(e.g., individual subjects, households, petri dishes). When you do that, you're assuming
that those units ofobservation are independent from one another. However, if the treat-
ment status ofone unit actually affects the outcomes ofanother unit, that's interference,
and that can bias the results of your experiment. In this experiment, the interference
concern is that the treatment status of the group that got the cash grants affected the
outcomes in the untreated group because the treated subjects actually shared some of
the treatment with the untreated subjects.

How do careful analysts deal with interference? Sometimes its interesting enough
that the interference itself becomes the object of investigation. Do the taxes in one
state influence economic development in a neighboring state? If a campaign mobi-
lizes a group of supporters, will that subsequently mobilize a group of opponents?
If a public health program vaccinates children in one school, will this help protect
children in another school? Researchers can sometimes design studies with the goal
of estimating these kinds of spillover effects. For example, Blattman could have ran-
domly assigned some friend groups to have one person treated with cash and other
friend groups to have nobody treated with cash. Then, he could have tested whether
the individuals who weren't given money behaved differently when a friend was given
money.

In general, careful analysts need to anticipate interference and design their studies
in ways that mitigate these possibilities. This is exactly why researchers do things like
running pilot studies. In Blattmans case, when he scaled up the experiment after the
problematic pilot, he made sure that it remained a secret which subjects had and had
not been assigned cash grants, to reduce the risk of interference.

Natural Experiments
For many interesting and important questions, we'd like to learn about causal

relationships; however, an experiment might be infeasible, unethical, unrealistic, or
prohibitively expensive. But sometimes the world creates something like experimen-
tal randomization for us, even without our intervening to actually run an experiment.
We already saw one example of this kind of natural experiment, in our discussion of the
effect of charter schools on academic outcomes in chapter 9. Although no quantitative
analyst has been able to conduct their own experiment where they randomly send some
kids to charter schools and others to public schools, many charter schools themselves
randomize admissions. The schools didn't randomize for scientific reasons but rather

because they were required to by law. The law presumably exists because of concerns
about fairness and equal opportunity, not causal inference. But regardless of the moti-
vation, these lotteries create randomization "in the wild" that allows us to estimate the
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effects of attending charter schools versus regular public schools more credibly than we
could by simply comparing the performance of students at the two types of schools and
trying to control for all the many potential confounders.

Natural experiments almost always involve some level ofnoncompliance—for exam-
ple, not everyone who wins a charter school lottery ultimately attends that charter
school, and some people who lose the lottery for one charter school win it for another.
Thus, in such settings, we typically either estimate an intent-to-treat effect (i.e., the
reduced-form relationship between winning the admissions lottery and academic out-
comes) or take an instrumental variables approach to estimate the complier average
treatment effect. In this example, the instrument would be winning the lottery, the treat-
ment is attending the charter school, and the outcome is some measure of academic
performance (e.g., test scores).

When taking the instrumental variables approach, we need to think seriously about
the conditions we described earlier. If there is natural randomization, we can have
confidence in exogeneity. That is, we can credibly estimate the effect of winning the
admissions lottery on academic performance and on attending the charter school. But
we have to think very carefully about the exclusion restriction. That is, are there ways
that winning the admissions lottery might affect academic performance other than
through its effect on attending a charter school?

It might well be that in the charter schools example, the exclusion restriction is rea-
sonable and that we really can estimate the complier average treatment effect. But let us
give you another example where the exclusion restriction is a bit more fraught.

Military Service and Future Earnings
The effect of military service on future earnings is of considerable interest to

economists. But, of course, people who serve in the military and do not serve in the
military differ in lots ofways that matter for earnings. Hence, a comparison of the earn-
ings of veterans and non-veterans (even controlling for a bunch of stuff) is hopelessly
confounded. Such a comparison does not provide a plausibly unbiased estimate of the
causal effect.

Fortunately (for social scientists), there is a natural experiment to help. During the
Vietnam War, draft-eligible men were randomly assigned draft numbers. People were
only actually drafted if their randomly assigned number was sufficiently low. Hence, we
have a source of random variation in military service.

Ofcourse, there was not perfect compliance with the draft lottery. For instance, some
young men volunteered to serve in the military, despite having a high draft number. (In
our earlier terminology, such men are always-takers.) And others, with low draft num-
bers, left the country or otherwise avoided the draft. (In our earlier terminology, such
men are never-takers.) So, if we want to get an estimate of the causal effect of military
service on earnings (rather than the reduced-form effect of lottery number on earn-
ings, which seems less interesting), we need to take an instrumental variables approach,
which many studies have done. The idea is to use draft number as the instrument,
military service as the treatment, and future earnings as the outcome.

In this context, exogeneity is quite plausible. As best we can tell, the government
really did assign draft numbers randomly. (Technically, they randomly assigned birth-
days, so everyone with the same birthday was in the same boat, but whether ones
birthday was selected was random.) So we really can estimate the effect ofdraft number
on military service and on future earnings.
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But what about the exclusion restriction? For the exclusion restriction to hold, it
needs to be the case that the draft lottery number has no effect on future earnings other
than through its effect on military service. How might this be violated?

One possibility concerns how people responded to receiving a low draft number.
Such people may have been more likely to engage in various activities that would allow
them to avoid the draft. For instance, they may have been more likely to flee the coun-
try. Or they may have been more likely to pursue higher education in order to receive a
student deferment, which excused them from the draft while they remained in school.
Becoming an expatriate or going to college might both directly affect future earnings.
As such, these are alternative paths by which the draft number might affect future earn-
ings other than through military service. Because of such violations of the exclusion
restriction, it might well be that, even with random assignment of draft numbers, the
instrumental variables approach will not allow us to use the draft lottery to credibly
estimate the effect of military service on future earnings.

Wrapping Up
There's a reason we call experiments the gold standard for causal inference. By ran-

domly assigning a treatment, we guarantee that the treated and untreated groups have,
in expectation, the same potential outcomes, meaning that we can obtain unbiased
estimates of a causal relationship.

Even with a randomized experiment, thorny problems can arise. So designing and
analyzing experiments requires vigilance and clear thinking. These same thorny prob-
lems can rear their heads outside the context of experiments, so we need to continue
thinking about them as we move on to other research designs.

Unfortunately for science, the ideal experiment that we'd like to run is often impracti-
cal, infeasible, or unethical. What do we do then? The next two chapters discuss special
circumstances in which we can still obtain credible estimates of causal relationships
even without anything being randomized.

Key Terms
• Research design: Approaches to obtaining unbiased estimates of a treatment

effect or other estimand.

• Random assignment: Deciding which units are assigned to receive treat-
ment in a random fashion (e.g., by flipping a coin or using a random-number
generator).

• Blocked/stratified random assignment: The process ofdividing experimental
subjects into different groups (typically groups that you believe have similar
potential outcomes) and then randomizing your treatment within each ofthose
groups. This can significantly improve the precision of your estimates. If the
probability of treatment varies across blocks or strata, you will have to account
for this (e.g., by controlling for block-fixed effects) in order to obtain unbiased
estimates.

• Noncompliance: When an experimental subject chooses a treatment status
other than the one to which it was assigned.

• Compliers: Units that take up the treatment status they are assigned.
• Always-takers: Units that are always treated, regardless of whether they are

assigned to be treated or untreated.
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• Never-takers: Units that are never treated, regardless of whether they are
assigned to be treated or untreated.

• Defiers: Units that take up the opposite of the treatment status they are
assigned.

• Intent-to-treat (ITT) or reduced-form effect: The average effect on the out-
come of being assigned to the treated rather than the untreated group. This
need not be the average treatment effect because of noncompliance.

• First-stage effect: The average effect of being assigned to the treated group on
take-up of the treatment. This corresponds to the fraction of compilers.

• Compiler average treatment effect (CATE): The average treatment effect for
the compilers—a special kind of LATE.

• Instrumental variables (IV): A set of procedures for estimating the CATE in
the presence of noncompliance. The Wald Estimator is a special case of instru-
mental variables. All IV designs require that we can credibly estimate the effect
of the instrument on the treatment and on the outcome (exogeneity), that the
instrument affects the treatment (compilers), that the instrument only affects
the outcome through its effect on the treatment (exclusion restriction), and
that there is not a large number units who take-up treatment if and only if the
instrument assigns them to the untreated group (defiers).

• Exogeneity: An instrument is exogenous if it is randomly assigned or "as if"
randomly assigned such that we can get an unbaised estimate ofboth the first-
stage and reduced-form effects.

• Exclusion restriction: An instrument satisfies the exclusion restriction if it
affects the outcome only through its effect on the treatment, not through any
other channel.

• Chance imbalance: The situation where, despite random assignment, the
treated and untreated groups differ in important ways because of noise.

• Statistical power: The statistical power of a study is technically denned as the
probability of rejecting the null hypothesis of no effect if the true effect is of a
certain non-zero magnitude. Colloquially, we say that a study has low statistical
power if it was unlikely to produce a statistically significant result even if the
effect being investigated is large.

• Attrition: The situation where experimental subjects drop out of the experi-
ment, such that you do not observe outcomes for those subjects. Attrition is
different from noncompliance.

• Interference: The situation where the treatment status of one unit affects the
outcome of another unit.

• Natural experiment: When something was randomized not for research pur-
poses, but careful analysts are nevertheless able to utilize this randomization to
answer an interesting causal question.

Exercises

11.1 Suppose a psychology lab attempts to study the phenomenon of behavioral
priming. Specifically, they want to know if experimental subjects walk slower
when they are exposed to words associated with aging and old age. They
recruit subjects to come to their lab and they pay them to complete a word
association task. Half the subjects are assigned to an untreated group for which
the words have nothing to do with aging, and the other half of the subjects are
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assigned to a treated group for which many of the words are related to aging
and old age.

After the subjects have completed their task, unbeknownst to the subjects,
one of the research assistants times how long it takes them to traverse the fifty-
foot hallway that leads to the building s exit. The researchers' plan is to test
whether the treatment leads to slower walking times.

Below are some facts about the experiment. For each one, think about
what implications that fact has for the experiment. Is this a problem for the
researchers? If so, what problem is it? What could they have done in their
experimental design or data analysis to address the problem?

(a) The subject pool was a wide cross section of society, so some of the sub-
jects were old, some were young, some were athletic, some were clumsy,
some were skinny, some were overweight. The treated group over-
represented older and less athletic people, compared to the untreated
group.

(b) Some of the subjects didnt pay close attention to the word association
activity, gave meaningless answers, and just went through it as quickly
as possible.

(c) Some of the subjects took a very long time to walk across the hallway
because they stopped to talk to a passerby or to check their phone.

(d) Some of the subjects never crossed the hallway at all because there was
another exit through the back of the building.

(e) The research assistants who timed the walking speed of the subjects
knew the hypothesis of the researchers and they were the same people
who administered the treatments.

(f) Some of the subjects talked to one another about the word association
task before they exited the building.

11.2 Download "GOTV_Experiment.csv" and the associated "README.txt," which
describes the variables in this data set, at press.princeton.edu/thinking-clearly.

We will be analyzing data from a randomized experiment to estimate the
effects of get-out-the-vote (GOTV) interventions on voter turnout.

Several factors complicate the analysis of this particular experiment.
First, the probability of being randomly assigned to treatment was different
for urban and non-urban areas. Second, some people assigned to treatment
did not receive the treatment. And third, we are unable to observe turnout for
some of the subjects. See the readme file for more details.

(a) Calculate the mean value of turnout for people who did and did not
receive the treatment, and interpret the implied effect of get-out-the-
vote interventions on turnout. Think about the likely biases that arise
from the three complications listed above. If you had to guess, would
you say that you are likely over- or under-estimating the average effect
with this analysis? Explain your answer.

(b) Using the lessons from chapter 10, try to account for the fact that the
probability of treatment varied between urban and non-urban places.
How did your estimate change? Why?

(c) Using the lessons from this chapter, let s try to account for noncompli-
ance. First, try to estimate the intent-to-treat effect (reduced form) and
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the compliance rate (first stage). Now divide the former by the latter to
estimate the compiler average treatment effect,

(d) Think about the attrition problem. What are you implicitly assuming
if you just drop the subjects for whom we don't observe their turnout?
Let's see how our estimates change under different assumptions. Esti-
mate the compiler average treatment effect assuming that none of the
subjects who attrited would have voted. What would your estimate
be under the worst-case scenario for the effectiveness of gotv? What
about the best-case scenario?

Readings and References
For a thorough guide to conducting experiments, particularly field experiments, we
recommend

Alan S. Gerber and Donald P. Green. 2012. Field Experiments: Design, Analysis, and
Interpretation. W. W. Norton.

The study showing that sickly children in Peru were weaned from breastfeeding
later is

Grace S. Marquis, Jean-Pierre Habicht, Claudio Franco, and Robert E. Black. 1997.
"Association of Breastfeeding and Stunting in Peruvian Toddlers: An Example of
Reverse Causality." International Journal ofEpidemiology 26(2):349-56.

The randomized experiment on breastfeeding in Belarus is
Michael S. Kramer, Tong Guo, Robert W. Piatt, Stanley Shapiro, Jean-Paul Collet,
Beverley Chalmers, Ellen Hodnett, Zinaida Sevkovskaya, Irina Dzikovich, and Irina
Vanilovich. 2002. "Breastfeeding and Infant Growth: Biology of Bias?" Pediatrics
110(2):343-47.

There are many papers on the Vietnam draft lottery. Two of them (one classic, one
recent) are

Joshua D. Angrist. 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery:
Evidence from Social Security Administrative Records." American Economic Review
80(3):313-36.

Joshua D. Angrist and Stacey H. Chen. 2011. "Schooling and the Vietnam-era GI
Bill: Evidence from the Draft Lottery." American Economic Journal: Applied Economics
3(2):96-118.

If the first exercise question made you wonder whether behavioral priming can actu-
ally influence someone's walking speed, we recommend the following study. It turns out
that the result depends on whether the timing is conducted by a machine or by a human
who knows the hypothesis. In other words, it's easy for researchers to trick themselves
into thinking they're detecting something when they know what they're supposed to
find.

Stephane Doyen, Olivier Klein, Cora-Lise Pichon, and Axel Cleeremans. 2012.
"Behavioral Priming: Its all in the Mind, but Whose Mind?" PLoS ONE 7(l):e29081.
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Regression Discontinuity Designs

What You'll Learn

• Even when experiments are infeasible, there are still some special situations
that allow us to estimate causal effects in an unbiased way.

• One such circumstance is when a treatment of interest changes discontinu-
ously at a known threshold. Here a regression discontinuity design may be
appropriate.

• Regression discontinuity designs estimate a local average treatment effect for
units right around the threshold where treatment changes.

Introduction

In chapter 11, we saw some examples of how clever natural experiments can help
us learn about causality, even when we cant run an actual experiment. The idea is to
look for ways in which the world creates situations where we can make apples-to-apples
comparisons without running an experiment. Sometimes, as with charter schools, the
world does this through actual randomization. Other times, you have to be a little more
clever.

In this chapter, we'll discuss one special situation that can help us generate credi-
ble causal estimates—when a treatment of interest changes discontinuously at a known
threshold. In the next chapter we'll consider another such situation—when treatment
changes over time for some units of observation but not for others.

In chapter 10, we discussed trying to learn about causal relationships by controlling
for confounders. We don t typically have much faith in such approaches because it is
so hard to measure all of the confounders out there. And if you cant measure some-
thing, you can t control for it. However, there are rare situations where we have a lot of
information about the assignment of the treatment that may make this plausible. One
example is a randomized experiment, the topic ofchapter 11. Ifwe know that treatment
was assigned randomly, we know there are no confounders. The focus of this chapter
is settings in which treatment is assigned according to some sharp rule. In these situ-
ations, we might be able to learn about the effect of the treatment using a regression
discontinuity design.

Suppose each unit of observation is associated with a score of some sort, and treat-
ment is determined by that score. Units whose score is on one side of a threshold get
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the treatment, and units whose score is on the other side of the threshold don t. This
sets up a situation where a regression discontinuity design may help you estimate causal
effects. Very close to that threshold, units on either side are likely to be similar to one
another on average. So a comparison of those two groups (one ofwhom got treatment
and the other didn't) may be very close to apples-to-apples.

Let's be a little more concrete. Suppose that we want to estimate the effect ofreceiving
a merit scholarship to college on future earnings. In general, this is difficult because the
kinds of students who receive merit scholarships are probably different in many ways
that matter for future earnings—intelligence, ability, ambition, work ethic—from those
who do not. And, of course, we cant measure and control for all these differences.

But what if the scholarship was awarded according to a strict scoring rule? A com-
mittee generates a score from 0 to 1,000 for every applicant based on GPA, test scores,
community service, and extracurricular activities. Everyone with a score of950 or above
gets the scholarship, and everyone below does not. Now, even though nothing is ran-
domized, we might be able to learn about the effect ofreceiving the scholarship for those
applicants who were right around the threshold of 950. How does this work?

Assume that the scholarship committee and the applicants cant precisely manipu-
late the scores. That is, the students put in effort without knowing exactly where their
scores will fall, and the committee honestly evaluates the students also without know-
ing exactly where the scores will fall. Then, in expectation, the people with scores of
950 are almost identical to those with scores of 949. Nothing is randomized, but there
are likely many idiosyncratic factors that could have easily pushed a 949 up to a 950,
or vice versa. Had the 949s taken their standardized test on a slightly less stressful day,
logged one more hour of community service out of hundreds, gotten one teacher who
was a slightly more generous grader in one class, they would have been 950s and won the
scholarship. Similarly, had the 950s had one minor, idiosyncratic thing not go their way,
they would have been 949s and lost the scholarship. So it seems reasonable to say that,
on average, the 949s are essentially the same as the 950s before the scholarship decision
is made. And therefore we have something like a natural experiment. The compari-
son of individuals right around the threshold—some ofwhom got the scholarship (the
950s) and some ofwhom did not (the 949s) for essentially random reasons—is apples-
to-apples. By comparing the future earnings of these two groups, we can estimate the
causal effect ofwinning a merit scholarship, at least for students with scores close to the
threshold.

Here's a more general way to think about this kind of situation. We want to estimate
the effect of a binary treatment on some outcome. Treatment assignment is perfectly
determined by some third variable (like the score above) that we call the running vari-
able. Specifically, if the running variable is above some threshold for a given unit, then
that unit receives the treatment (T = 1), and if the running variable is below that thresh-
old, that unit does not receive the treatment (T = 0). Such a situation might produce
data that looks like figure 12.1, with black dots corresponding to treated units and gray
dots corresponding to untreated units. In the figure, the threshold is at a value of zero
in the running variable.

How can we estimate the effect of the treatment in this kind of situation?
At first glance, it looks like there's not much we can do. The running variable is

strongly correlated with the outcome of interest. In the scholarship example, this makes
sense because the committee wants to select high-ability people, and, not surprisingly,
the criteria they use to create the scores turn out to be highly correlated with future
earnings, regardless of whether a student wins the scholarship. The committee uses a
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Figure 12.1. Scatter plot with treatment determined by a continuous running variable. Black dots are
treated units. Gray dots are untreated units.

cutoff rule, so everyone who receives the scholarship has higher values of the running
value than anyone who does not. Clearly, then, ifwe compare those who do and do not
receive treatment, we know that the inputs to the score are confounders. And, because
of the cutoff rule, we cant make an apples-to-apples comparison by finding students
with the same value of the running variable, some ofwhom did and some ofwhom did
not receive treatment (i.e., the scholarship). Everyone with the same score has the same
treatment status.

But don t give up yet. Let s think more about what we can do here. We can estimate
the expected value of the outcome for a given value of the running variable. For units
whose score on the running variable is above the threshold, this will tell us the expected
outcome with treatment at that value ofthe running variable. We can estimate this quan-
tity for every value of the running variable all the way down the threshold. Similarly,
for units whose score on the running variable is below the threshold, this will tell us the
expected outcome without treatment at that value of the running variable. We can esti-
mate this quantity for every value ofthe running variable all the way up to the threshold.
Therefore, right at the threshold, we have estimates of the expected outcome with and
without the treatment. The difference between those two values might well be a good
estimate ofthe effect of the treatment, at least for those units with a value ofthe running
variable right at the threshold.

We could estimate this quantity by comparing units on either side of the thresh-
old, all of which have values of the running variable very close to the threshold. This
was the idea behind comparing the 949s to the 950s to learn about the effect of merit
scholarships. But there are actually somewhat better approaches.

One strategy is to run two regressions of the outcome on the running variable—one
for the untreated observations below the threshold and one for the treated observations

above the threshold. Then, we can use these two regressions to predict the outcomes
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Figure 12.2. The regression discontinuity design estimates the jump in expected outcomes at the
threshold, which is the causal effect of the treatment for units at the threshold.

with and without treatment right at the threshold. From these predictions we can
estimate the "jump" or "discontinuity" in the outcome as the running variable crosses
the threshold. That discontinuity is an estimate of the causal effect of the treatment for
units right at the threshold. For this reason, we call this strategy a regression discontinuity
(RD) design. Figure 12.2 illustrates the idea.

One thing worth emphasizing is the localness of the average treatment effect that a
regression discontinuity design estimates. It is possible that the average effect of the
treatment is different at different values of the running variable, as in figure 12.3. In this
figure, both potential outcomes are shown for each unit of observation. For each unit,
Y\ is shown in black, and Yq is shown in gray. The actual outcomes that we observe are
filled in, and the counterfactual outcomes that we don t observe are hollow. The size of
the gap is different at each value of the running variable.

To be more concrete, in our example, the effect of winning a scholarship on future
earnings could be different for low- and high-achieving students. The regression dis-
continuity estimand is the average treatment effect for units with values of the running
variable right at the threshold. So, in our example, it estimates the effect of winning a
scholarship on the future earnings of students with scores of 950, which might be dif-
ferent from the effect on students with scores of, say, 700. We refer to this estimand as
a local average treatment effect (LATE). As always, the LATE can differ from the overall
average treatment effect in the population. So it is important, when using a regression
discontinuity design, to think about whether the quantity estimated is really the one
you are interested in.

Regression discontinuity designs are important in a variety ofsettings. One common
application is in estimating the effects of government programs. Many policies change
discontinuously at known thresholds. For example, individual-level government ben-
efits are often means-tested, with eligibility determined by whether some continuous
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Figure 12.3. A regression discontinuity design estimates the LATE at the threshold. This need not be the
overall average treatment effect, as average treatment effects may differ for different values of the running
variable

measure of income or poverty is on one or the other side of a threshold. County-level
policies are often determined by population thresholds or by the share of residents of
a certain type. Regression discontinuity designs provide a straightforward way to esti-
mate the effects of these programs. Furthermore, these designs estimate the effects of
the programs for the kinds of people or places about which we care the most—the
marginal unit that was just barely eligible or ineligible. So if policy makers are trying
to figure out whether they should shrink or expand a particular government program,
these regression discontinuity estimates should be highly informative.

How to Implement an RD Design
There are different ways for analysts to go about implementing their own regression

discontinuity designs, and there are pros and cons associated with each one.
The simplest approach, as mentioned above, is to just compare the mean outcome for

small ranges ofthe running variable (sometimes called bins) on either side ofthe thresh-
old. For example, we might compare the average earnings for applicants who scored
between 950 and 954 to the average earnings for applicants who scored between 945
and 949. For reasons you'll see in a moment, we often call this the naive approach.

A clear advantage of the naive approach is its simplicity. What makes it naive is the
fact that it is virtually guaranteed to produce biased estimates. Why is this? The running
variable is typically correlated with potential outcomes. Why would the committee use
the scores to allocate scholarships if they didn t believe the scores corresponded to abil-
ity, effort, motivation, or some other factor that is likely correlated with earnings in the
future?
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Because the running variable is correlated with the potential outcomes of interest,
there will always be some baseline difference between the groups just above and just
below the threshold. Ofcourse, as the size ofthe bins being compared (sometimes called
the bandwidth) shrinks, the bias should shrink, but it will never disappear.

We can already see that one of the important decisions an RD analyst must make
is to select a bandwidth. And when they make that decision, they often face a trade-
off between reducing bias and improving precision. Smaller bandwidths will generally
yield less biased estimates but also less precise estimates because they are using less
data.

A potentially less biased alternative to the naive approach is the local linear approach.
Here, we again select a bandwidth, and for observations within that bandwidth, we run
linear regressions of the outcome on the running variable separately on either side of
the threshold. We use these estimates to get predicted values of the outcomes with and
without treatment right at the threshold, and the differences in those predicted values
is our estimate of the effect of the treatment for units at the threshold.

With this approach, we're allowing for the possibility that there is a relationship
between the running variable and the outcome, we're allowing that relationship to be
different on either side of the threshold, and we're assuming that this relationship is
approximately linear (at least for the small window of data that we're analyzing). That
is the approach we took in figure 12.2.

To make our lives easier and to obtain an estimate of the standard error, there is a
way to implement this local linear approach with a single regression rather than run-
ning two separate regressions. First, rescale the running variable so the threshold is zero
(i.e., subtract the value of the threshold from the running variable). Second, generate
a treatment variable indicating whether an observation is above or below the thresh-
old. Third, generate an interactive variable by multiplying the treatment variable and
the rescaled running variable. And lastly, regress the outcome on the treatment, the
rescaled running variable, and the interaction of the two for the observations within
your bandwidth. The estimated coefficient associated with the treatment provides the
estimated discontinuity.

A third common way that people implement RD designs is with polynomial regres-
sions. An analyst might regress the outcome on the treatment, the running variable, and
higher-order polynomials (i.e., the running variable to the second power, third power,
and so on). This approach accounts for a possible non-linear relationship between the
running variable and the outcome. A downside is that data points that are far from the
threshold can have a big effect on the estimated discontinuity.

When implementing an RD design, the researcher clearly gets to make a lot of
choices, so they have to be careful to avoid the problem of over-comparing and under-
reporting. Your particular decisions should depend on your substantive knowledge and
beliefs about the relationship between the running variable and the outcome and also
how much bias you're willing to accept in exchange for a gain in precision, or vice versa.
The best approach is to justify your choices with a combination of theory, substantive
knowledge, and data analysis and, perhaps most importantly, show results for different
specifications. If your estimates are robust across different bandwidths and specifica-
tions, this will lend additional credibility to your results. If your result only holds for
one very particular specification, you should be skeptical.

To illustrate how one can explore robustness across bandwidths, figure 12.4 shows
an analysis from one of Anthony's papers coauthored with Haritz Garro and Jorg
Spenkuch. They hoped to test whether firms benefit from political connections by test-
ing whether a firm's stock price increases when a political candidate to whom the firm
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Figure 12.4. Visualizing how an RD estimate (solid) and confidence interval (dotted) depends on the
bandwidth.

made a campaign contribution barely wins versus barely loses. So the outcome is a
measure of the change in a firms stock price, the running variable is the vote share
of the politically connected candidate, and the treatment is an indicator for whether
that candidate won the election.

They use a local linear approach, but they want to make sure that their results are
robust to different bandwidths. Figure 12.4 shows the estimated effects along with
the upper and lower bounds of the 95 percent confidence interval for sixty different
possible bandwidths between 0.5 and 30 percentage points. As we would expect, the
confidence intervals are larger and the estimates are more volatile for smaller band-
widths, but the estimates become more precise as the bandwidth increases and more
data is included. Fortunately, the estimates are similar for almost all of the band-
widths, which is reassuring. Had the estimate changed meaningfully as the bandwidth
increased, that would suggest a trade-off between bias and precision, and we'd have to
think further about which estimates we trust more.

Lets think more about how to implement and interpret regression discontinuity
designs through an example. The winners and losers of elections are determined solely
by vote shares, so ifwe want to estimate the effects of a certain kind of election result, a
regression discontinuity design might be especially useful.

Are Extremists or Moderates More Electable?

Surrounding both the 2016 and 2020 presidential elections, the Democratic party
engaged in a heated debate about the electability of extremist versus moderate candi-
dates. In particular, the liberal wing ofthe party was disappointed by the nominations of
Hillary Clinton and Joe Biden, both ofwhom they perceived as too moderate. The way
to win elections, they argued, isn't to appeal to centrist voters. Rather, parties should
nominate ideologically pure candidates who can turn out the base. Bernie Sanders, the
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argument went, was in a better position to defeat Donald Trump in the general election
than either of his more moderate rivals. Sure, there might have been some moderates
turned off by some of Sanders's policy proposals. But Sanders would have more than
made up for those losses by mobilizing progressives who had lukewarm feelings about
Clinton and Biden.

How can we assess whether this argument is right? On the one hand, moderate can-
didates might persuade more people in the middle to support their party. On the other
hand, extremists might mobilize the base. So if you want to maximize the chances that
your party wins the general election, whom should you support in the primary elec-
tion? It is, of course, impossible to say with confidence what would have happened if,
counterfactually, Sanders had won the 2016 or 2020 Democratic nomination (remem-
ber the fundamental problem ofcausal inference from chapter 3). But maybe we can say
more about what happens, on average, when a party nominates a more extreme versus
more moderate candidate.

To try to get a handle on this, let's turn to congressional elections, for which we have a
lot more data than we do for presidential elections. At first glance, it looks like the advo-
cates of ideologically pure candidates might be onto something. After all, it sure looks
like Congress has a lot of ideological purists in it. If moderation is a winning strategy,
why are there so many extremists in office?

For starters, we have to make sure we aren't forgetting the lesson ofchapter 4: correla-
tion requiresvariation. The fact that manycongresspeople are ideologically extreme does
not imply a positive correlation (to say nothing ofa causal relationship) between ideolog-
ical extremism and electoral success. To ascertain the correlation of interest, we need to
compare the electoral fortunes ofextremists and moderates. Sure, one possible explana-
tion of the large number ofextremists in Congress is that extremism really is correlated
with winning. But another is that there are just very few moderates running.

Moreover, it may be misleading to think about extremism and moderation on a
national scale. Rather, for the purpose of thinking about electoral strategy, we want to
know whether a candidate is extreme or moderate relative to the preferences of their
particular electorate or constituency. Sanders is surely an extreme liberal relative to
the median voter in the United States. But when he's running to represent Vermont
in the Senate, perhaps hes only somewhat left of center. Indeed, maybe many congress-
people appear ideologically moderate relative to their constituencies but ideologically
extreme relative to the country as a whole. This could happen if the constituencies are
themselves constructed to be ideologically extreme compared to the country—some far
to the left and others far to the right. But in this case, you wouldn't want to interpret the
presence of lots of ideological extremists as evidence that extremism itself is an effective
electoral strategy, because the winning congressional candidates would not have been
perceived as ideological extremists by the voters that elected them.

Given these concerns, what we really want to know is not the correlation between
ideology and electoral success but the effect of nominating an ideologically extreme
candidate on electoral fortunes. To find an unbiased estimate of this, we need to com-
pare how parties do in elections when they nominate an extremist versus a moderate,
all else equal. On average, is the party better off running an extremist or a moderate
candidate?

Ofcourse, a naive comparison ofthe correlation between electoral outcomes and ide-
ological extremism of candidates isn't apples-to-apples. Presumably, the times, places,
and situations where a party nominates a moderate are different from those where a
party nominates an extremist for all sorts of reasons that are consequential for electoral
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outcomes. For instance, most likely, liberal Democrats win primaries in more liberal
places where the Democratic Party is stronger, and moderate Democrats win in more
conservative places where the party is weaker. So ifwe found that extremists do better in
general elections, that wouldn't tell us that parties are better offwhen they elect extrem-
ists. The causal interpretation of that correlation would obviously be confounded.
We could try to control for differences across time and place, but we would always be
worried that there are still unobservable baseline differences between places nominat-
ing extremists and moderates. We can do a better job using a regression discontinuity
design.

Major party congressional candidates are selected in primary elections. And election
outcomes are determined by a sharp threshold. Suppose we analyze a large sample of
primary elections that pitted one extreme candidate against one moderate candidate.
The treatment we are interested in is the nomination of an ideologically extreme candi-
date. We want to know the effect ofthat treatment on the party's vote share in the general
election. To set up the RD, define the running variable as the vote share of the extreme
candidate in the primary. If that vote share is below one-half, the party runs the mod-
erate in the general election; if it exceeds one-half, the party runs the extremist. We can
now estimate the effect of running an extremist by implementing an RD design, com-
paring a party's general election outcome when it just barely nominated an extremist in
the primaries versus when it just barely nominated a moderate in the primaries.

Andrew Hall did exactly this in a 2015 study. He estimated a large, negative discon-
tinuity in a parly's general election results at the threshold. That is, on average, a party
that nominates an ideological extremist instead of a moderate significantly decreases its
performance in the general election. Despite the predictions of the Sanders supporters,
the evidence suggests that nominating extremists, on average, is a bad electoral strategy.

Hall's design is illustrated in figure 12.5. The two lines represent separate linear
regressions on each side of the 50 percent threshold. Each small gray circle corresponds
to one observation—a party election. The larger, black circles show the average general
election vote share for .02-point bins of the winning margin. The large negative discon-
tinuity right at the threshold is the estimated effect on general election vote share of
nominating an extremist instead of a moderate for a race where the primary election
was evenly split between a moderate and an extremist.

What explains this result? In a follow-up study, Hall and Dan Thompson investi-
gate further. Using a similar regression discontinuity design, they study the effect of
nominating an extremist on voter turnout. Interestingly, contrary to the predictions of
the Sanders supporters, there's no evidence that extremist candidates turn out the base.
Or, rather, nominating an extremist does appear to turn out the base, but the wrong
one. When a party runs an extremist candidate, more people from the other party turn
out to vote in opposition. Therefore, if we had to guess, these results suggest that if
Bernie Sanders had won the Democratic primary in 2016 or 2020, he would have per-
formed worse than Clinton and Biden. He likely would have lost some of the centrist
voters that preferred Clinton or Biden over Trump and likely would have motivated
Republican voters to turn out in greater numbers.

Continuity at the Threshold
In order for the regression discontinuity approach to provide an unbiased esti-

mate of the causal relationship, it has to be the case that treatment status changes
sharply at the threshold and nothing else that matters for outcomes does. If baseline



Chapter 12

Oh

0.8 -

0.7 -

0.6 -

0.5 -

0.4 -

•

•

i

.

.

•

•

. •*

.

••

•

*
•

• •

i

•

__ •

••

• •

•

i

• !
# 1

1

.• -: !■
• • .!

• • •
•• • *. ^

5; '. f

1

#

• •

• • •

• •

•

p^ •• • • • •
• • •

• •.% • •
•* • • • •

• • •
•• • • • •

• •
• • •

1

••

• • •

• •

r-

-0.2 -0.1 0 0.1

Extreme candidate's primary election winning margin

Figure 12.5. The effect of running an extremist on electoral prospects.

0.2

characteristics also change discontinuously at the threshold, then any differences in
average outcomes right around the threshold could be due to those changes in baseline
characteristics rather than treatment. That is, the comparison of treated and untreated
units would no longer be apples-to-apples, even right at the threshold, because those
two groups would be differentiated by things other than just treatment status. But if
average baseline characteristics of the units change continuously (rather than in a dis-
crete jump) as the running variable passes through the threshold, then we can obtain
an unbiased estimate of the effect of the treatment for units with a value of the running
variable that is right at the threshold because the only thing that will differentiate units
just on one or the other side of the threshold, on average, will be their treatment sta-
tus. We call the requirement that baseline characteristics don t jump at the threshold
continuity at the threshold (or just continuity for short).

Lets see why continuity is crucial. Figure 12.6 illustrates what it looks like if the
continuity condition is satisfied. As with figure 12.3, the filled-in dots are data we actu-
ally observe. The solid lines plotted through them are the average potential outcome
functions (for the relevant value of treatment assignment). The hollow dots are data we
don t observe (since we don t ever observe, say, the potential outcome under treatment
for a unit with a value of the running value below the cutoff). The dashed lines plot-
ted through them are the average potential outcome functions (again, for the relevant
value of treatment assignment). Continuity is satisfied because these average potential
outcome functions have no jump. That is, the average potential outcomes under both
treatment and no treatment are continuous at the threshold. All that changes at the
threshold is that units go from being untreated to treated.

Importantly, if continuity holds, then the gap between the gray and black dots at the
threshold is in fact the LATE at that threshold, which is just what we want.

But what if continuity does not hold, so that the potential outcomes look like
figure 12.7?
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Figure 12.6. A case where average potential outcomes satisfy continuity.

Figure 12.7. A case where average potential outcomes do not satisfy continuity at the threshold.

The true average treatment effect at the threshold is the difference between the filled-
in gray dots and the hollow black dots at the threshold. (You could also define it as the
difference between the filled-in black dots and the hollow gray dots.) But, right at the
threshold, the potential outcomes jump up, even absent a change in treatment. We dont
know why, but something besides treatment is changing right at the threshold. As a
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consequence, not all of the observed gap—that is, the jump between the filled-in gray
and the filled-in black dots—is the result of the change in treatment. Some of it is the
result ofwhatever else is changing. As such, that gap is a biased estimate of the LATE—
in this case it is a big over-estimate of the true effect of the treatment—since the gap
includes both the effect of the treatment change and also the effect of whatever else is
changing. Thus, without continuity at the threshold, the RD will give a biased estimate
of the local average treatment effect.

When it comes to implementing an RD design, there are many different paths the
analyst can take. However, viewed in the correct light, once a researcher has estab-
lished that plausibility of continuity of potential outcomes at the threshold, their job
is clear. Using the sort of techniques we have already discussed (e.g., regression), they
simply have to generate unbiased estimates of two things—the average outcome with
and without treatment at the threshold.

To think about when an RD design is appropriate, we want to think about when
continuity at the threshold is or is not plausible. It is worth noting that the continuity
requirement is less demanding than you might have expected for credibly estimating
causal relationships. For instance, it does not require that the treatment is assigned ran-
domly (even by nature). In our scholarship case, we were able to use an RD even though,
for every single student, treatment assignment was deterministic (i.e., there was no ran-
domness at all). Continuity also does not require that the outcome be unrelated to the
running variable. Again, in our scholarship example, the running variable reflects gen-
uine academic merit and, thus, is positively correlated with future earnings outcomes.
Finally, it does not require that units have no control over their value of the running
variable or that units have no knowledge of the threshold. In our scholarship example,
students could do all sorts of things to affect the running variable (e.g., study harder, do
more community service).

So what could go wrong such that continuity does not hold?
Suppose that units have extremely precise control over their value of the running

variable such that certain types may cluster just above or just below the threshold. This
could potentially be a problem. In our scholarship example, we might worry that more
privileged or more ambitious students have better information about the scoring system
and can do just enough to exceed the threshold. Or we might worry that the commit-
tee has reasons to want to grant scholarships to students with certain characteristics
(e.g., children of donors, athletes, particular racial or ethnic groups) and manipulates
the scores or the threshold a little bit to get the desired result. In both of these cases,
individuals just above the threshold would not be comparable to those just below.
Instead they would have been sorted (by themselves or others) around the threshold
by other baseline characteristics that matter for outcomes. If this is the case, regression
discontinuity does not provide an unbiased estimate of the causal effect.

Things can go wrong even without sorting around the threshold, simply because
things other than treatment status change at the threshold. Here's a pretty interesting
real-world example. In France (and many other countries), a mayors salary depends on
the size of a city s population. For instance, by law, mayoral salaries jump when a city
has a population of more than 3,500 residents.

This seems like an opportunity to use an RD to learn about the effect of mayoral
salary on all sorts of outcomes. For instance, we might want to know whether cities
are better governed or elections are more competitive when mayors are paid more. For
either of these outcomes, the treatment of interest is mayoral pay. The running variable
is population. And we happen to know that, by law, there is a discontinuous jump in
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the treatment as the running variable crosses the 3,500-resident threshold. Surely cities
with 3,400 residents and cities with 3,600 residents are similar on average.

It looks good, no? But there's a problem with continuity. It doesn't come from towns
strategically determining their populations to change the mayor's salary. It comes from
other policies. You see, mayoral salary is not the only feature of city governance that
changes by law at the 3,500-resident threshold. Other things that change include the
size of the city council, the number of deputy mayors, the electoral rules, the process
for considering a budget, gender-parity requirements for the city council, and so on.
So any discontinuity in outcomes at the 3,500-resident threshold does not provide an
unbiased estimate ofthe effect ofmayoral salary because other characteristics that might
matter for those outcomes also change discontinuously at the threshold.

Clearly, then, before interpreting the results from an RD as an unbiased estimate of
a causal relationship, it is important to assess the plausibility of the continuity assump-
tion. There are several ways to do this. The most important is to think substantively. The
best way to spot possible violations of continuity is to know a lot of details of the situa-
tion, so that you can be alert to the potential for sorting, manipulation, or other things
changing at the threshold. In our scholarship example, ifyou had sat in on a committee
meeting or had deep knowledge ofthe kinds ofcharacteristics the committee was under
pressure to make sure were well represented among scholarship recipients, you would
be in a better position to assess the plausibility of the continuity assumption than ifyou
had no specific substantive knowledge of the situation. There are also other kinds of
analyses one can do to help validate the continuity assumption. For instance, an analyst
can look directly at measurable pre-treatment characteristics and see whether they seem
to have discrete jumps at the threshold. Ifmany measurable characteristics appear con-
tinuous at the threshold, we might be more confident that other, unmeasured baseline
characteristics are also continuous. One can also look at the distribution of the run-
ning variable itself. If we find bunching—that is, significantly more units whose value
of the running variable is just above the threshold than just below, or vice versa—then
we might be concerned about some manipulation that violates continuity.

Exactly how bad a violation of the continuity assumption is depends on the details
of the problem. If there is just a little sorting, or a small discontinuity in baseline char-
acteristics, the RD is biased, but perhaps only a little bit. And if the researcher has a lot
of data and, so, can focus on units only extremely close to the threshold, sorting would
have to be extremely precise for it to affect the results. For instance, ifwe are estimating
our scholarship RD using data on students with scores in the 940-949 range and stu-
dents in the 950-959 range, we might be more concerned about sorting than ifwe have
enough data so that we can consider just students with a score of 949 or 950.

Does Continuity Hold in Election RD Designs?
As we discussed earlier in this chapter, elections are a great setting for RD designs

since they have a clear running variable and a sharp threshold for winning. Not sur-
prisingly, the election RD has been used in many studies on the effects of elections on
outcomes ranging from campaign donations to drug violence to nominating an extrem-
ist versus a moderate candidate. So it is important to think clearly about whether the
election RD is in fact a good research design.

Let's remember what needs to be true for the election RD to provide an unbiased
estimate of a causal relationship. We need for everything else that matters for the out-
come under study to be continuous at the threshold. This guarantees that places where



256 Chapter 12

the relevant candidate (e.g., an extremist) just barely won are on average comparable
to places where the relevant candidate just barely lost. In any application of the RD
approach, including elections, it is always important to ask if this condition is plausible.

And, indeed, some studies have argued that continuity may be violated in some elec-
toral settings. The concerns have to do with manipulation of election results in close
elections. For instance, in Halls study on the effects of nominating an extreme can-
didate, perhaps the party leadership prefers moderates. If it has ways of intervening
(say, by putting pressure on officials responsible for recounts) to nudge close election
outcomes, it might do so in favor ofmoderate candidates. For his study, Hall shows that
this does not appear to be the case.

But in another setting, the post-WWII U.S. House ofRepresentatives, some evidence
suggests that there may be continuity problems. In the relevant studies, scholars are
interested in using the RD to estimate the incumbency advantage—How much better
does the incumbent party do than the out-party, all else equal? A researcher might com-
pare the probability a Democrat wins an election in situations where a Democrat just
barely won or lost the previous election in the hopes ofestimating the effect ofone elec-
tion result on subsequent election results. For this to be a valid research design, there
must be continuity at the threshold—the probability ofthe Democrat versus the Repub-
lican winning in the next election wouldn't change discontinuously in vote share in the
previous election if it weren't for the fact that the previous election result was different.
But there is reason to worry this isn't true. In particular, in House elections decided by
less than 0.25 percent of the vote, the incumbent party is statistically more likely to win
than the challenging party. If this is because parties are able to manipulate close elec-
tion outcomes, then we might worry that, even very close to the 50 percent threshold,
we aren't making an apples-to-apples comparison when we compare future electoral
outcomes in places where one party just barely won versus just barely lost. So, what's
going on?

Devin Caughey and Jas Sekhon, who wrote a study about this phenomenon, argue
that the evidence points to electoral manipulation—incumbents have very precise
knowledge ofexpected vote share and act strategically on or before election day in ways
that allow them to win very close elections more than half the time. To believe this,
however, you must believe that incumbent candidates can distinguish between situa-
tions where they expect their vote percentages to fall between 49.75 and 50.0 versus
50.0 and 50.25. Real-life campaigns appear to have nowhere near this level of preci-
sion in their election forecasts. Therefore, strategic campaigning is unlikely to be the
explanation. What else could explain the imbalance? Most likely, this is a case of noise
producing a false positive, much like Paul the Octopus in chapter 7. When Anthony and
four coauthors replicated the same tests that Caughey and Sekhon did, but for twenty
different electoral settings across several countries, the postwar U.S. House was the only
one for which such an imbalance was present. Thus, we suspect the election RD is in
fact a good research design for learning about causal relationships in politics.

Noncompliance and the Fuzzy RD
Thus far, we've talked about using a regression discontinuity design when treatment

is completely determined by the running variable and the threshold. When this is the
case, we sometimes say we are using a sharp regression discontinuity design.

But, just as in experiments, there are sometimes problems of noncompliance in set-
tings that are otherwise suitable for an RD. That is, treatment may be discontinuously
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affected by which side of the threshold the running variable is on, but not determinis-
tically. In addition to the compliers, there are some never-takers (units with values of
the running variable above the threshold but who are untreated) and there are some
always-takers (units with values of the running variable below the threshold but who
are nonetheless treated).

When there are such noncompliers, we need to combine the regression discontinuity
approach with an instrumental variables (IV) approach ofthe sort we discussed in chap-
ter 11. We do so by using which side of the threshold the running variable is on as an
instrument for treatment assignment. This approach is sometimes called afuzzy regres-
sion discontinuity design. To see how fuzzy RD works, let s work through an example.

Bombing in Vietnam
A classic question in counterinsurgency is whether violence by counterinsurgents

that kills civilians as well as combatants is productive or counterproductive. Melissa
Dell and Pablo Querubin shed some quantitative light on this question in the setting of
the U.S. bombing strategy during the Vietnam War.

In Vietnam, the United States engaged in a massive bombing campaign in an attempt
to suppress the Viet Cong guerilla forces in the north. Dell and Querubin want to
evaluate whether such bombing worked.

One comparison they might make to try to answer that question is whether insur-
gents were more or less active in the parts ofVietnam that experienced more bombing.
But if you think clearly, you'll see that such a comparison is not apples-to-apples. One
might, for instance, worry that the United States was more likely to bomb locations
where the insurgents were already quite active, in which case there would be a reverse
causality problem.

In order to better estimate the effect ofbombing, Dell and Querubin use a regression
discontinuity design. The history underlying their design is quite amazing.

During the Vietnam War, Secretary ofDefense Robert McNamara was obsessed with
quantification. McNamara had pioneered the use of quantitative operations research
during his time as president of Ford Motor Company. And at the Department of
Defense, he surrounded himself with a group of "whiz kids" and a large team of com-
puter scientists, economists, and operations researchers, with the goal of providing
precise, scientific, quantitative guidance to war planners and the military.

One of these efforts was the Hamlet Evaluation System (HES). This project col-
lected answers to an enormous battery of monthly and quarterly questions about
security, politics, and economics. The data were collected by local U.S. and South Viet-
namese personnel who obtained information by visiting hamlets. Question answers
were entered by punch card into a mainframe computer, and then a complex algorithm
converted them into a continuous score, ranging from 1 to 5, that was supposed to char-
acterize hamlet security. These raw scores, however, were never reported out by the
mainframe. No human ever saw them. Instead, the computer rounded the scores to the
nearest whole number, so that all the analysts or decision makers ever saw was a grade
of A, B, C, D, or E. Better letter grades were understood to correspond to greater ham-
let security. These grades helped determine which hamlets should be bombed—with
bombing being more often targeted at hamlets receiving worse grades.

Dell and Querubin were able to reconstruct the algorithm and, using declassified
data, recover the underlying continuous scores. This set them up for a regression
discontinuity design.
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Figure 12.8. Hamlets that just barely received better grades in the Hamlet Evaluation System were bombed
less frequently than hamlets that just barely received worse grades.

Think about hamlets with scores in the 1.45-1.55 range. Some ofthese hamlets ended
up with a score just below 1.5 and received an E. Others ended up with a score just
above a 1.5 and received a D. But the difference between, say, a 1.49 and a 1.51, on a
score created by a complicated (and largely arbitrary) combination of answers to 169
questions is probably pretty arbitrary. So we should expect that the underlying level of
Viet Cong activity in these two types of hamlets is the same—that is, we should expect
the potential outcomes to be continuous at the threshold.

But treatment—which, here, means being bombed by the United States—changes
discontinuously at the threshold. U.S. war planners did not ever see the underlying con-
tinuous score. All they saw was the letter grade. And, so, they perceived hamlets that
received a D as more secure than hamlets that received an E (and similarly for D vs. C,
C vs. B, and B vs. A). As such, they were more likely to bomb the hamlets with lower
letter grades.

Figure 12.8 shows that this was the case. The horizontal axis measures the running
variable—the distance of the first decimal of a hamlets score from .5. Hamlets whose

value of the running variable is negative (because its scores first decimal was below .5)
were rounded down to the nearest letter grade, while those whose value of the running
variable is positive were rounded up.

The vertical axis measures the frequency with which a given hamlet was bombed
after the scores were tabulated. The gray dots correspond to binned averages of many
hamlets with similar values of the running variable. The dark lines correspond to sep-
arate regressions on either side of the threshold. The figure shows a discontinuous
jump down in the frequency of US. bombings at the threshold—hamlets that just
barely received better grades were bombed less frequently than hamlets that just barely
received worse grades.
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Figure 12.9. Hamlets that experienced more bombing saw more subsequent insurgent activity compared
to otherwise similar hamlets that experienced less bombing.

Given this discontinuous change in treatment, it makes sense to use a regression
discontinuity design to estimate the effect ofbombing on insurgency. Figure 12.9 illus-
trates the idea. The horizontal axis is the same running variable as above. But now
the vertical axis is the outcome of interest—Viet Cong activity in the hamlet follow-
ing the tabulation of the scores. As the figure shows, indiscriminate bombing appears
to have been counter-productive. There is a discontinuous drop in Viet Cong activity
at the threshold. This means that hamlets that were bombed more (those to the left of
the threshold) experienced more insurgent activity than otherwise similar hamlets that
were bombed less.

But notice there is something a little different here from our normal regression dis-
continuity story. The treatment is not binary (there's a continuum ofbombing intensity),
and going from a better score to a worse score did not guarantee increased bombing.
The security score was only one input to bombing decisions. So it was not the case that
treatment went from fully on to fully off at the threshold. That is to say, there was likely
noncompliance—hamlets whose treatment status didn't depend on which side of the
threshold their score fell.

But we know what to do about noncompliers. As we discussed in chapter 11, we can
use an IV approach. Recall, an instrument must satisfy several conditions:

1. Exogeneity: The instrument must be randomly assigned or "as if" randomly
assigned, allowing us to obtain unbiased estimates of both the first-stage and
reduced-form effects.

2. Exclusion restriction: All of the reduced-form effect must occur through the
treatment. In other words, there is no other pathway for the instrument to
influence the outcome except through its effect on the treatment.
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3. Compilers: There must be some units that receive a different value of the
treatment as a result of the instrument.

4. No defiers: Whatever the sign ofthe first-stage effect, there must be no units for
whom the instrument affected their treatment value in the opposite direction.

How would we apply an instrumental variables approach here? The idea is to use
which side of the threshold our running variable is on as the instrument. Let s see that
this satisfies the four conditions needed for an instrument.

The whole point ofthe regression discontinuity design is exogeneity. Ifpotential out-
comes are continuous at the threshold, then the RD allows us to obtain an unbiased
estimate of both the first stage (the effect of the instrument on bombing, as illustrated
in figure 12.8) and the reduced form (the effect of the instrument on Viet Cong activity,
as illustrated in figure 12.9).

The exclusion restriction requires that which side ofthe threshold the running variable
is on has no effect on Viet Cong activity other than through its effect on bombing. Here
there are questions to be asked. For instance, we need to worry about whether these
grades were used for any other U.S. military or policy decision making. If so, then the
instrument will not satisfy the exclusion restriction.

Dell and Querubin provide two kinds of evidence in support of the plausibility of
the exclusion restriction. First, they repeat their RD analysis for lots of other kinds of
military operations by both the American and South Vietnamese militaries. They find
no evidence of any other kind of military operations changing discontinuously at the
threshold. As such, it is unlikely that the effects they find are the result ofmilitary actions
other than bombing. Second, they review the administrative history ofthe Hamlet Eval-
uation System. That review reveals little evidence of the HES scores being used for any
other policy decision making. The one exception is a program aimed at driving the Viet
Cong out of the least secure hamlets. But that program had ended before the sample
period covered by Dell and Querubins data.

The requirements that there be compilers and no defiers are the most straightfor-
ward. It is clear from both the data and the history that the letter grades affected
bombing. And it seems unlikely that there were defiers—hamlets that were bombed
more because they received a better security score. However, unlike in our previous
examples, compliance is not so discrete. Different units can change their treatment
status in response to the instrument by different amounts.

Given all of this, Dell and Querubin feel justified in employing a fuzzy RD design—
using which side of the threshold a hamlets security score was on as an instrument for
bombing. In doing so, they are estimating an estimand that is a bit of a mouthful since
it reflects the localness ofboth the RD and the IV In particular, they are estimating the
local average treatment effect ofbombing on insurgent activity for hamlets with scores
close to the threshold (the LATE from the RD) whose level ofbombing is responsive to
that score (the CATE from the IV).1 Doing so, they find that bombing was counterpro-
ductive. For such hamlets, going from experiencing no bombing to experiencing the

further complicating matters, each hamlet is not simply either a complier or not. There is potentially a con-
tinuum of compliance whereby the instrument increases bombing in some hamlets by a lot, others by a little, and
so on. So instead ofthinking about a complier average treatment effect, we actually have to think about a weighted
average treatment effect, where each hamlet is weighted according to the extent to which bombing responded to
the score in that case.
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Figure 12.10. The effect of being ahead or behind at halftime on winning the game.

average level of bombing increased the probability of Viet Cong activity in the hamlet
by 27 percentage points.

Motivation and Success

Lets end with one last, fun example of a regression discontinuity design. Jonah
Berger and Devin Pope implement an RD to estimate the effect of psychological moti-
vation on performance. They analyze over eighteen thousand professional basketball
games to test whether the motivation ofbeing behind and needing to catch up leads to
better performance than the complacency of being ahead and simply needing to hold
onto a lead. Their running variable is the point margin of the home team at halftime,
and they test whether the probability ofultimately winning a game changes discontinu-
ously as the halftime point margin crosses the threshold of 0, when the home team goes
from being just behind to just ahead.

Figure 12.10 shows the results. As we would expect, the point margin at halftime is
correlated with the probability of ultimately winning the game. When the home team
is 10 points ahead at halftime, they go on to win about 85 percent of the time, but when
they're 10 points behind, they only win 25 percent of the time. This makes sense since
some teams are better than others—good teams are both more likely to be ahead at
the half and more likely to win the game. More interesting, however, is the compar-
ison when the score is almost tied at the half. Presumably, there is very little quality
difference, on average, between teams that are ahead or behind by just 1 point at half-
time. Yet, the home team is actually more likely to win when they're 1 point behind at
halftime than when they're 1 point ahead. Berger and Pope's regression discontinuity
shows that being just barely behind increases the probability that the home team wins
by 6 percentage points! Maybe those inspirational halftime speeches really do work.
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Wrapping Up
When we know that a treatment of interest was determined (at least partly) by a

threshold or cutoff, an RD design might allow us to obtain credible estimates of the
effect of that treatment at that cutoff.

These situations arise more frequently than you might think. Suppose you're working
for a baby food company that asks you to estimate the effect of their television ads. You
probably can t convince the marketing department to randomize where they advertise;
they want to advertise in places where they are likely to have the biggest effects. But
maybe they already decided to air television ads in all media markets where more than
3 percent of households have an infant. This is a perfect opportunity for an RD design.
Nothing was randomized, the marketing department did what it wanted to do anyway,
but you have an opportunity to learn about the effectiveness ofadvertising by comparing
baby food consumption in places just above and just below that 3 percent threshold.

Another opportunity for us to obtain credible estimates ofcausal relationships absent
any randomization is when treatments change for some units and not others. In these
cases a difference-in-differences design may be appropriate, and that's the topic of the
next chapter.

Key Terms
• Running variable: A variable for which units' treatment status is determined

by whether their value of that variable is on one or the other side of some
threshold.

• Regression discontinuity (RD) design: A research design for estimating a
causal effect that estimates the discontinuous jump in an outcome on either
side of a threshold that determines treatment assignment.

• Continuity at the threshold: The requirement that average potential outcomes
do not change discontinuously at the threshold that determines treatment
assignment. If continuity at the threshold doesn't hold, then a regression dis-
continuity design does not provide an unbiased estimate of the local average
treatment effect.

• Sharp RD: An RD design in which treatment assignment is fully determined
by which side of the threshold the running variable is on.

• Fuzzy RD: A research design that combines RD and IV. The fuzzy RD is used
when treatment assignment is only partially determined by which side of the
threshold the running variable is on. The researcher, therefore, uses which
side of the threshold the running variable is on as an instrument for treat-
ment assignment. In this setting, continuity at the threshold guarantees that
the exogeneity assumption of IV is satisfied. But we still have to worry about
the exclusion restriction and the other IV assumptions.

Exercises

12.1 The state of Alaska asks you to estimate the effect of their new automatic voter
registration policy on voter turnout. The policy was first implemented in
2017, but they report to you that, unfortunately, they initially didn't have the
resources to roll the policy out to everyone in the state. As a result, they ini-
tially just applied automatic registration to people who had moved to Alaska
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within two years of the date of the policy being implemented, but they haven t
yet applied it to people who moved to Alaska before then. They're worried that
this might be a limitation for your study, and they apologize that they weren't
able to implement the policy for everyone, but they're still hoping that you can
help. How would you respond, and how might you go about estimating the
effect of automatic voter registration in Alaska?

12.2 The U.S. federal government subsidizes college education for students through
Pell Grants. An individual is eligible for a Pell Grant if their family income is
less than $50,000 per year.

(a) How could you potentially use this information and implement
an RD design to estimate the effect of college attendance on future
earnings?

(b) Would this be a sharp or a fuzzy RD design?
(c) What data would you want to have at your disposal?
(d) What is the running variable?
(e) What's the treatment?
(f) What's the instrument (if any)?
(g) What's the outcome?
(h) What assumptions would you have to make in order to obtain credible

estimates?

12.3 Download "ChicagoCrimeTemperature2018.csv" and the associated
"README.txt," which describes the variables in this data set, at press
.princeton.edu/thinking-clearly. This is the same data on crime and tempera-
ture in Chicago across different days in 2018 that we examined in chapters 2
and 5. Imagine that the Chicago Police Department implemented a policy in
2018 whereby they stopped patrolling on days when the average temperature
was going to be below 32 degrees (and suppose they have really good forecasts
so they can very accurately predict, at the beginning of the day, the average
temperature for that day). Their logic is that it's less pleasant for police officers
to be out on the streets when it's cold, and there's less crime on cold days any-
way. Use this (fake) information to estimate the effect of policing on crime.

(a) A helpful first step when implementing an RD design is to gener-
ate your own running variable where the threshold of interest is at 0.
Rescale the temperature such that the threshold is at 0 by generating a
new variable called "runningvariable," which is simply the temperature
minus 32.

(b) We'll also need to generate our treatment variable. Generate a variable
that takes a value of 1 if policing was in place on that day and 0 if it was
not.

(c) It's often helpful to look at our data before conducting formal quanti-
tative analyses. Make a scatter plot with crime on the vertical axis and
temperature on the horizontal axis. Focus only on days when the tem-
perature was within 10 degrees of the policy threshold, and draw a line
at the threshold. Visually, does it look like there is a discontinuity at the
threshold?
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(d) There are several different ways to formally implement an RD design.
The simplest is to focus on a narrow window around the threshold
and simply compare the average outcome on either side. Focusing only
on days when the temperature was within 1 degree of the threshold,
compute the average number of crimes just above and just below, and
compute the difference. Notice that you can (if you'd like) do this in one
step with a regression.

(e) What concerns would you have with the naive approach above? Think
about the trade-offs you face as you're deciding which bandwidth to
select. How does your estimate change if you use a bandwidth of
10 degrees instead of 1 degree? Why?

(f) Another strategy is to use the local linear approach. For days that
were less than 5 degrees below the threshold, regress crime on the
running variable and compute the predicted value at the threshold.
(Hint: Because you rescaled your running variable, this should be
given by the intercept.) Do the same thing for days that were less than
5 degrees above the threshold. Compare those two predicted values.
(Note that this can also be done with a single regression as described in
the text.)

(g) What benefits does this local linear approach have over the naive
approach?

(h) You might also consider allowing for a non-linear relationship bet-
ween the running variable and the outcome. Generate new variables
corresponding to the running variable squared and the running
variable to the third power. Regress crime on policing, the running
variable, the running variable squared, and the running variable
to the third power. Only include observations within 10 degrees of
the threshold. Interpret the estimated coefficient associated with
policing.

(i) What are the pros and cons of this polynomial approach relative to the
previous approaches?
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CHAPTER 13

Difference-in-Differences Designs

What You'll Learn

• Another situation that potentially allows us to estimate causal effects in an unbi-
ased way is when a treatment changes at different times for different units. Here
a difference-in-differences design may be appropriate.

• Difference-in-differences designs effectively control for all confounders that
don't vary over time, even if they cant be observed or measured.

• Difference-in-differences designs can often be useful as a gut check, a simple
way to probe how convincing the evidence for some causal claim really is.

Introduction

Regression discontinuity isn't the only creative research design that lets us get at
causality in the absence of an experiment. When some units change treatment status
over time but others don t, we may be able to learn about causal relationships using a
strategy called difference-in-differences.

The basic idea is pretty simple. Suppose we want to know the effect ofa policy. We can
find states (or countries or cities or individuals or whatever the relevant unit ofobserva-
tion is) that switched their policies and measure trends in the outcome ofinterest before
and after the policy change. Of course, we may worry that outcomes are systematically
changing over time for other reasons. But we can account for that by comparing the
change in outcomes for states that changed policy to the change in outcomes for states
that did not change policy. If the trends in outcomes for states that did and did not
change policy would have been the same if not for the policy change in some states,
then we can use the states that did not change policy as a baseline of comparison, to
account for the over-time trends. Our estimate of the causal effect of the policy change,
then, will come from any change in outcomes in states that did change policy over and
above that baseline trend that we estimated from the states that didn't change policy.
This is called a difference-in-differences design because we first get the differences (or
changes) in outcomes over time for states that did and did not change policy. Then we
compare the difference in those differences.

Like the regression discontinuity design, the power of the difference-in-differences
approach is that it allows us to estimate causal effects even when we cant random-
ize the treatment or control for every possible confounder. But nothing is for free.



Difference-in-Differences Designs 267

Difference-in-differences designs come with their own requirements. For regression
discontinuity, we needed continuity at the threshold. For difference-in-differences, we
need the condition we just described: that the trend in outcomes would have been the
same on average across units but for the change in treatment that occurred in some
units. This condition is often called parallel trends.

Parallel Trends

It's worth making sure we are thinking clearly about what the parallel trends require-
ment really means. As we've said, difference-in-differences estimates are unbiased so
long as the trends in outcomes would have been parallel, on average, in the absence
of any changes in treatment. In other words, the parallel trends requirement is really
about potential outcomes. For a binary treatment, we can think about each unit s out-
come with and without treatment in each of two time periods. To capture this idea, lets
think about there being potential outcomes for each unit in each time period. We will
refer to the two time periods as period I and period II. And lets think about our pop-
ulation being divided into two groups: a group that changes from untreated to treated
between the two periods (UT) and a group that remains untreated in both periods
(UU).

Label the average potential outcome in group Q in period p under treatment status
Tas

We observe the outcomes for a sample of the members ofeach group in each period.
Lets start with the group that never changes treatment status (UU). If we just look at
the average change in outcome between the two periods, it gives us an estimate of the
difference in outcomes in the untreated condition between the two periods:

DIFF^ = fluu ~ Y\uu + Noises
average untreated trend for UU

The noise comes from the fact that we are looking at a sample.
And analogously for the group that changes treatment status (UT), the average

change in outcome between the two periods is

DIFF^r — y\jU1— Yq&T ~^~ Noise^/7-.
The difference-in-differences is, quite literally, the difference between these two

differences:

Difference-in-Differences = DIFFuj- — DIFF^

To see where parallel trends comes in, we are going to cleverly rewrite DIFF^x by
adding and subtracting Y0yj- from it. You'll recall we did something similar back in
chapter 9 in order to understand baseline differences. Just like then, while we know this
seems kind of weird, we ask that you trust us for a minute. And, remember, at the very
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least it should be clear that we aren t doing any harm since, by adding and subtracting
the same term, we are really just adding zero. When we do that, we get

DlFFur = ^T-%UT
= (JIi,UT-YI0Ut) + (jour-Tour) + Noises

average treatment effect for UT in II average untreated trend for UT

Once again, our algebra trick was actually pretty cool. We can now see that the over-
time difference for group UT is made up of three things, which correspond to our
favorite equation. First, there is the average (period II) treatment effect for group UT.
In chapter 9 we learned that this was called the ATT, the average treatment effect on
the treated units. We can think of this as our estimand. Second, there is the trend in
outcomes that would have happened for group UTeven ifthey had remained untreated.
We can think of this as a source of bias that comes from just looking at what happens
in the UT group before and after treatment. And third, there is noise, as always.

With this in hand, we can now rewrite the difference-in-differences in terms of the
ATT, the average untreated trends in potential outcomes for both groups, and noise.
This will make clear what we are really doing—using the over-time trend in the UU
group to try to eliminate the bias that comes from just looking at DIFF^x:

Difference-in-Differences = DIFFut ~ DIFFuu

-Y11 Y11 + Y11 Y1 Y11 Y1

ATT average untreated trend for UT average untreated trend for UU

difference in average trends

+ Noise^r- Noise^
Noise

Now we can see what parallel trends really means in terms ofpotential outcomes and
our favorite equation. The difference-in-differences equals the ATT (estimand) plus the
difference between the average untreated trends for group UT and group UU (bias)
plus noise. So when does the difference-in-differences give us an unbiased estimate of
the ATT? When the untreated trend is the same for both groups, so that the difference
in average trends equals zero.

This is what parallel trends means. The change in average outcome would have been
the same in the treated and untreated groups had everyone remained untreated. When
this is the case, by subtracting DIFF^ from DIFF^x we eliminate the over-time trend,
leaving an unbiased estimate of the average treatment effect (in period II) for units that
switched treatment status.

Notice, this notation highlights another subtle point. Difference-in-differences does
not quite estimate the ATE. It estimates the average treatment effect for those units
who actually change treatment status—that is, the ATT. Whether or not this is a good
estimate of the ATE depends on whether treatment effects differ systematically across
the units that do and don t switch treatment status. But, in any event, this is a genuine
causal effect and, at least for some applications, may in fact be the quantity of interest.
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Table 13.1. Fast-food employment in New Jersey and Pennsylvania in 1992.

New Jersey

Pennsylvania

January 1992
NJandPA

low minimum wage

20.44

23.33

November 1992

NJ high minimum wage
PA low minimum wage

21.03

21.17

Two Units and Two Periods

So far, we've been a bit abstract. Let s talk about a concrete example from classic work
by David Card and Alan Krueger on the effect of the minimum wage on employment.
This example is nice because it shows how difference-in-differences works in its most
simple form. There are only two units, two periods, and one change in treatment status
for one of the units.

Unemployment and the Minimum Wage
Card and Krueger wanted to know whether a higher minimum wage increased

unemployment. Their idea was to exploit the fact that New Jersey raised its mini-
mum wage in early 1992, while Pennsylvania, which borders New Jersey, did not.
They collected data on the average number of full-time equivalent employees (FTE)
per fast-food restaurant (which tend to pay minimum wage) in both New Jersey and
Pennsylvania in January 1992 (before New Jersey raised its minimum wage) and in
November 1992 (after New Jersey raised its minimum wage). Their data is summarized
in table 13.1.

A first comparison we might think to make to learn about the effect of the minimum
wage on employment is the difference between the employment levels in New Jersey
and in Pennsylvania in November 1992. After all, by November, New Jersey had a higher
minimum wage than Pennsylvania. That comparison shows that Pennsylvania fast-food
restaurants employed only 0.14 more people, on average, than New Jersey restaurants,
suggesting that a higher minimum wage may have almost no impact on employment.

But that comparison is not apples-to-apples, so we cannot interpret the difference as
the effect of raising the minimum wage. New Jersey and Pennsylvania might differ in
all sorts of ways that matter for employment besides the minimum wage. For instance,
perhaps those two states have different levels of economic prosperity, different tax sys-
tems, or differently sized fast-food restaurants. And since, in this comparison, the state
and the treatment are perfectly correlated, any such difference between New Jersey and
Pennsylvania can be thought of as a confounder.

Another comparison we might make is to look at the change in employment in New
Jersey between January and November, since the New Jersey minimum wage changed
between these two months. This comparison shows an increase in employment of 0.59
employees per restaurant, suggesting that perhaps raising the minimum wage slightly
increased employment. This approach has the advantage of comparing one state to
itself, so we no longer need to worry about any cross-state differences. But now we have
a new concern. Maybe January and November differ in terms of fast-food employment
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Table 13.2. Two comparisons that do not unbiasedly estimate the causal effect of minimum
wage increase.

January 1992 November 1992 Difference
NJ and PA NJ high minimum wage November—January

low minimum wage PA low minimum wage

20.44 21.03 0.59
NJ

effect ofhigh minimum wage
+ over-time trend

+ noise

PA 23.33 21.17

-0.14

Difference effect ofhigh minimum wage
NJ — PA + differences between states

+ noise

for other reasons—for example, because of seasonality or overall changes to the econ-
omy over the course of the year. Any such time trends would be a confounder in this
comparison. So this comparison also isn't apples-to-apples.

Table 13.2 shows the two differences weVe discussed and lays out, in the terms of
our favorite equation, why neither gets us an unbiased estimate of the effect of the min-
imum wage. The difference between employment in November and January in New
Jersey is the sum of the effect of the higher minimum wage (estimand), the over-time
trend (bias), and noise. The difference between employment in New Jersey and Penn-
sylvania in November is the sum of the effect of the higher minimum wage (estimand),
differences between the states (bias), and noise. So both differences are biased.

But we can do better. Start by thinking about the comparison between New Jersey
and Pennsylvania in November. The problem with that comparison is that it reflects
both the effect of the higher minimum wage (the estimand) and any systematic dif-
ferences between New Jersey and Pennsylvania (the bias), plus, as always, noise. But
suppose the differences between New Jersey and Pennsylvania aren't changing over
time. Then the difference in employment in New Jersey and Pennsylvania in January,
when they both have a lower minimum wage, reflects those same across-state differ-
ences, but without the effect of the higher minimum wage that New Jersey adopted
later in the year. So we can use that employment difference in January to estimate
the underlying differences between the two states. And then, subtracting the January
difference from the November difference (i.e., finding the difference-in-differences)
will leave us with an unbiased estimate of the effect of the higher minimum wage.
(Of course, there is different noise in each comparison, so the noise terms don t just
cancel.)

The same procedure works ifwe start from our comparison ofNew Jersey in Novem-
ber to New Jersey in January. The problem with that comparison is that it reflects both
the effect of the higher minimum wage and any other differences between November
and January that matter for employment (plus noise). But suppose those over-time
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Table 13.3. Difference-in-differences estimate of the effect ofminimum wage on fast-food
employment.

NJ

PA

January 1992
Ai7 and PA

low minimum wage

20.44

23.33

November 1992

NJ high minimum wage
PA low minimum wage

21.03

21.17

Difference

November—January

0.59

effect ofhigh minimum wage
+ over-time trend

+ noise

-2.16

over-time trend

+ noise

Difference-in-Differences

-2.89 -0.14 0.59 - (-2.16) =
Difference differences between states effect ofhigh minimum wage —0.14 — (—2.89) = 2.75
NJ — PA + noise + differences between states effect ofhigh minimum wage

+ noise + noise

trends are the same in New Jersey and Pennsylvania. Then the difference in employment
in Pennsylvania between November and January is an estimate of the over-time trend,
without any effect of the minimum wage (since Pennsylvania didn't change its mini-
mum wage in 1992). So subtracting the change in employment in Pennsylvania from
the change in employment in New Jersey will also leave us with an unbiased estimate
of the effect of the higher minimum wage.

As shown in table 13.3, either way we do this calculation, we find the same answer.
Surprisingly, the estimate that this procedure leaves us with is that a higher minimum
wage appears to increase employment by 2.75 FTE per restaurant. The key is that the
Pennsylvania data suggests that there was a big baseline drop in employment from Jan-
uary to November 1992. So the 0.59 FTE increase in NJ was a misleading under-estimate
of the true effect being masked by an over-time trend.

Importantly, by calculating the difference-in-differences, we were able to account
for systematic differences between the states and this over-time trend, without ever
observing what those differences or trends were. This is the power of the difference-
in-differences approach.

Of course, this wasn't magic. As we've said, in order for this approach to be valid, we
need the parallel trends condition—that the over-time trend in outcomes (and, thus,
confounders) would have been the same across units but for the change in treatment
status—to hold. But this is typically a less demanding assumption than assuming we've
actually controlled for all possible confounders. For instance, in our example, we're not
assuming that New Jersey and Pennsylvania are the same (or that we've directly con-
trolled for any differences) absent any differences in minimum wage. We're also not
assuming that there are no time trends. Instead, we're assuming that the trends are
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parallel: whatever time trends affect employment do so in the same way in both New
Jersey and Pennsylvania, at least in expectation.

Difference-in-differences has a lot going for it, and there are a lot of situations where
we think this parallel trends condition is quite plausible. This design accounts for all
differences between units that don t vary over time that would plague a comparison of
the two units in just one time period. It also accounts for all of the time-specific factors
that would plague a before-and-after analysis of any one unit. What it does not account
for is time-varying differences between units. These are still a problem if they vary in
ways that correspond with the treatment. For example, ifNew Jersey increased its mini-
mum wage because they thought the economy was about to experience a boom relative
to neighboring states, then this would be a violation of the parallel trends assumption.

Ofcourse, even if the parallel trends assumption seems conceptually reasonable, just
looking at two units is not particularly illuminating. Surely lots of idiosyncratic differ-
ences pop up in any two places in any two months, so the noise in the estimate is likely
to be large. To do better, we need to extend the intuition we developed in this simple
example to situations where we observe more than two units over more than two time
periods.

N Units and Two Periods

To start extending our intuition, suppose there are lots of units (e.g., maybe we have
data on employment and minimum wage from all fifty states) but still just two time
periods. And suppose that some of the units never received the treatment while other
units received the treatment in the second but not the first period. We still want to look
at changes for units that experience a change in treatment and compare those to changes
for units that did not experience a change in treatment. We have three different options
for doing so, all of which are algebraically identical and will, thus, provide the same
answer:

1. By hand: Just as we did in the example above, calculate the average outcome
in each period separately for those that never received the treatment and those
that got the treatment in the second period and calculate the difference-in-
differences by hand.

2. First differences: Put the data into a spreadsheet with one row per unit (this
is called wideformat). Calculate the change in the outcome and the change in
the treatment for each unit, and regress the former on the latter. The change
in treatment will be 0 for the units that never change and 1 for units that do
change. So we're just comparing the average change for these two groups.

3. Fixed effects regression: Put the data into a spreadsheet with one row per unit
period (this is called longformat). Regress the outcome on the treatment while
also including dummy variables for each unit and time period. In this example,
we would have a dummy variable that takes a value of 1 if the observation is in
period II and 0 if the observation is in period I. We would also have separate
dummy variables for each unit. So the dummy variable for unit i would takes
the value 1 if the observation involved unit i and 0 if it involved a different unit
(there would be one such dummy variable for each unit). We often call these
dummy variables fixed effects. For instance, if an analyst says they included
state fixed effects in a regression, they just mean that they included a separate
dummy variable for each state. Including these fixed effects ensures that we're
removing all average differences between units and all average differences over
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time, and once we've done that, the coefficient associated with the treatment
variable is just the difference-in-differences.

Let's look at a fun example with multiple units.

Is Watching TV Bad for Kids?
Matthew Gentzkow and Jesse Shapiro were interested in how watching television as

a pre-schooler affects future academic performance. The problem, of course, is that
how much television a kid watches is affected by all sorts of factors that also affect
future school performance. So a simple comparison ofTV watchers to non-TV watchers
isn't apples-to-apples. To get at the causal relationship more credibly, they used varia-
tion in the timing with which TV originally became available in different locations in
the United States. We are going to simplify what they did so you can see their basic
idea.

Broadcast television first became available in most U.S. cities between the early 1940s
and the early 1950s. Happily, in 1965, there was a major study of American schools
(called the Coleman Study) that, among other things, recorded standardized test scores
for over three hundred thousand 6th and 9th graders. A 9th grader in 1965 was in pre-
school in approximately 1955. A 6th grader in 1965 was in pre-school in approximately
1958. Gentzkow and Shapiro use both the over-time rollout of TV and the Coleman
data to learn about the effect of pre-school television watching on test scores.

Let's imagine that we have the Coleman data on test scores for the 6th and 9th graders
in two types of towns. Towns in group A first got TV in 1953. So they had TV when
both the 6th and 9th graders in the Coleman study were in pre-school. Towns in group
B didn't get TV until 1956. So they had TV when the 6th graders were in pre-school
but not when the 9th graders were. Overall, then, table 13.4 summarizes the way the
observed data look.

Ifyou want to learn about the effect ofhaving access to TV as a pre-schooler on future
academic achievement, a first comparison you might think to make is to compare the
test scores of the 9th graders in the B towns (who couldn't watch TV in pre-school) to
the test scores of the 9th graders in the A towns (who could watch TV in pre-school).
You could do that by simply subtracting the average test score of a 9th grader in a B
town from the average test score of a 9th grader in an A town.

But we already know lots of reasons why we cannot interpret that as an unbiased
estimate of the causal effect of having access to TV in pre-school. These two types of
towns might be different in all sorts of ways, besides when broadcast TV showed up,
that matter for academic performance. For instance, maybe they have different average
quality schools, different industries, or what have you. And since, in this example, the
type of town and the treatment are perfectly correlated, any such difference between
the towns is a confounder.

Another comparison we might make is to look at the difference in test scores in the
B towns between the 9th graders and the 6th graders, since the 6th graders had access
to TV in pre-school but the 9th graders did not.

This approach has the advantage of holding fixed the type of town, so we no longer
need to worry about systematic cross-town differences. But now we have a new concern.
Maybe the 9th-grade and 6th-grade cohorts differ in their test performance for other
reasons—for example, because 9th graders are older, or because of cohort-specific dif-
ferences. Any systematic over-time or cohort differences would be a confounder in this
comparison.
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Table 13.4. TV and test scores data structure.

A Towns

TV in 1953

B Towns

TV in 1956

9th Graders in 1965

pre-school in 1955

Avg Test Scores 9A

Avg Test Scores 9B

6th Graders in 1965

pre-school in 1958

Avg Test Scores 6A

Avg Test Scores 6B

Table 13.5. Two comparisons that do not result in unbiased estimates of the effect ofTV

A Towns

TV in 1953

B Towns

TV in 1956

Difference

9th Graders in 1965

pre-school in 1955

Avg Test Scores 9A

Avg Test Scores 9B

9A-9B

effect of TV
+ town differences

+ noise

6th Graders in 1965

pre-school in 1958

Avg Test Scores 6A

Avg Test Scores 6B

Difference

6B-9B

effect of TV
+ cohort differences

+ noise

Table 13.5 sums up the two ideas weVe had thus far and explains why neither gets us
a credible estimate of the true effect in terms of our favorite equation.

But, just as with the minimum wage example, we can do better. Start by thinking
about the comparison between 9th graders in the two types of towns. The problem
with that comparison is that it reflects both the effect ofTV exposure and any other sys-
tematic differences between the types of towns. But suppose those baseline differences
between the types of towns aren't changing over time. Then the difference in academic
performance between the 6th graders in the two types of towns, all ofwhom had access
to TV in pre-school, reflects those same cross-town differences, but without the effect
of TV. So we can use that difference between the 6th graders to estimate the cross-town
differences. And then, subtracting the difference between the 6th graders from the dif-
ference between the 9th graders (i.e., calculating the difference-in-differences) will leave
us with just the effect of TV exposure in pre-school (plus noise).

The same procedure works if we start from our comparison of 9th graders and 6th
graders from the B towns. The problem with that comparison is that it reflects both the
effect of exposure to TV in pre-school and any baseline differences between the 6th-
and 9th-grade cohorts that matter for academic performance (plus noise). But suppose
those over-time or cohort trends are the same in the A towns and B towns. Then the
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Table 13.6. How difference-in-differences might give an unbiased estimate of the effect of TV.

A Towns

TV in 1953

B Towns

TV in 1956

Difference

9th Graders in 1965

preschool in 1955

Avg Test Scores 9A

Avg Test Scores 9B

9A-9B

effect of TV
+ town differences

+ noise

6th Graders in 1965

preschool in 1958

Avg Test Scores 6A

Avg Test Scores 6B

6A-6B

town differences
+ noise

Difference

6A-9A

cohort differences
+ noise

6B-9B

effect of TV
+ cohort differences

+ noise

Difference-in-Differences

(6B - 9B) - (6A - 9A)
= (9A - 9B) - (6A - 6B)

effect of TV + noise

difference in academic performance between 6th and 9th graders in A towns is an esti-
mate of the over time or cohort trend without any effect of TV (since both sets of kids
had access to TV in pre-school in Town A). So subtracting the difference in test scores
in the A towns from the difference in test scores in the B towns will again leave us with
an unbiased estimate of the effect of pre-school TV exposure.

As shown in table 13.6, either way we do this calculation, we find the same answer.
For those interested in the answer, Gentzkow and Shapiro find evidence that, during

the 1950s, having access to TV in pre-school was actually beneficial for average test
scores, especially for kids from poorer families. Of course, this was at a time when kids
watched shows like Howdy Doody. So you might not want to immediately extrapolate
to the present day.

More important, for our purposes, is seeing the power of the difference-in-diff-
erences approach. By calculating the difference-in-differences, we were able to account
for systematic differences between towns and over time (or cohorts), without ever
observing what those differences or trends were.

N Units and N Periods

Suppose you have more than two periods and suppose that the treatment is changing
at different times for different units. What do you do?

Much of the logic from the above discussion still applies. Of course, option 1 above
(calculating the difference-in-differences by hand) no longer works. But you can still
use option 2 (first differences) or option 3 (fixed effects). However, first differences
and fixed effects are no longer mathematically identical and will not necessarily give
you the same answers once you move beyond two periods. Whats the difference?
With first differences, you're regressing period-to-period changes in the outcome on
period-to-period changes in the treatment. With fixed effects, you're regressing the out-
come on the treatment while controlling for all fixed characteristics of units and time
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periods. Both are doing the same basic thing, but they are using slightly different kinds
ofvariation.

Which specification makes more sense depends on the specific context. In general,
the fixed effects strategy is more flexible. For instance, it allows you to include addi-
tional time-varying control variables in the regression (if necessary), and it also allows
you to conduct some helpful diagnostics. Importantly, in both cases, the timing of the
effect matters for exactly what you are estimating. In the case of first differences, you
are looking for effects that happen immediately after the treatment status changes. If
it takes some time for the effect of the treatment to set in, or if the effect size decays
or grows over time, you can get misleading estimates. However, complications in the
timing oftreatment also create complications for interpreting exactly what is being esti-
mated when you use a fixed effects specification. We aren t going to go into these issues
in any detail because they are actually the topic ofcutting-edge research as ofthe writing
of this book. However, if you go on to do quantitative analysis involving difference-in-
differences, you may want to delve more deeply into these questions. We suggest some
readings at the end of the chapter.

Even though there can be some complicated technical details, the intuition of
difference-in-differences designs should be clear from our examples. And it is an impor-
tant intuition. If someone shows you that some treatment of interest is correlated with
an outcome ofinterest, you are already skeptical because ofwhat we learned in chapter 9.
Difference-in-differences allows you to check whether changes in the treatment are also
correlated with changes in the outcome. Ifthey are, then that might be more compelling
evidence of a causal relationship. And if they aren t, then the original correlation may
have been the result of confounding.

Let's look at an example of a study that uses a fixed effects approach to implement-
ing a difference-in-differences design when there are multiple units changing treatment
status at different times.

Contraception and the Gender-Wage Gap
The availability of oral contraceptives, starting in the 1960s, gave women unprece-

dented control over their reproductive and economic decisions. Understanding the
impact ofthis contraceptive revolution on women's lives is important for understanding
the evolution of the modern economy and society.

Of course, if we want to estimate the effects of oral contraception on women's child
birth decisions, labor market participation, or wages, we can t simply compare outcomes
for women who did and did not use oral contraception. After all, access to health care is
affected by things like wealth, education, geography, race, and so on. So such compar-
isons are sure to be confounded. And no one ran an experiment giving some women
access to oral contraceptives while restricting access to others. But this doesn't mean we
can't make progress on these causal questions.

In an important paper, Claudia Goldin and Lawrence Katz point out that state poli-
cies created a kind of natural experiment. Oral contraceptives first became available
in the United States in the late 1950s. However, the legal availability of oral contra-
ceptives to younger women differed across states. In a few states, laws prevented the
sale of contraception to unmarried women, and in most states, women under the
age of majority needed parental consent before obtaining contraception. Over time,
courts and state legislatures gradually removed these restrictions and lowered the age of
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majority. Helpfully, for the purposes ofcausal inference, they moved to do so at different
times.

This meant that in the earliest moving states ofAlaska and Arkansas, an unmarried,
childless woman under the age of twenty-one could obtain oral contraception by 1960.
In the latest moving state ofMissouri, this wasn't possible until 1976. And for the other
states, it was somewhere in between. This is important because women under twenty-
one make particularly consequential decisions about when to have children, when to
get married, whether to pursue higher education, and so on.

In another influential paper, Martha Bailey uses this variation to implement a
difference-in-differences design to estimate the effect of early access to oral contracep-
tives on when women first have children and whether and to what extent they entered
the paid labor force.

The basic idea is straightforward. Imagine four groups of women across two states,
Kansas (which allowed younger women access to oral contraceptives in 1970) and
Iowa (which didn't allow access until 1973). There are women who were aged eigh-
teen to twenty in the late 1960s in both states; neither of these groups had access to
oral contraceptives. And there are women who were aged eighteen to twenty in the
early 1970s in each state; the women in Kansas had access to oral contraceptives, while
the women in Iowa did not. Thus, we can use the changes in outcomes for the women
in Iowa as a baseline of comparison for the changes in outcomes for the women in
Kansas to try to estimate the effect of early access to oral contraception for women in
Kansas.

Bailey can do better than this simple example, since she has data for women from
many age cohorts for all fifty states, and different states changed policy at different
times. So she makes use of a fixed effects setup—regressing her outcome measures on a
dummy variable for whether a given cohort ofwomen had access to oral contraception
when they were aged eighteen to twenty, as well as state fixed effects and cohort fixed
effects. This allows her to implement a difference-in-differences design with many units
changing treatment status at different times.

Since it's not random which states allowed early access to oral contraceptives first, we
should think about parallel trends. Is it reasonable to assume that the trends in child-
bearing and labor market participation are parallel, on average, across states, and that
states did not strategically shift contraceptive rules just as they otherwise expected these
outcomes to shift for other reasons? Bailey provides some reasons to think the answer is
yes. For instance, she shows that the timing of legal access to contraceptives for younger
women is uncorrelated with a wide variety of state characteristics in 1960 that you
might expect to influence these outcomes. These include geography, racial composi-
tion, average marriage ages, women's education, fertility, poverty, religious composition,
unemployment for men or women, wages for men and women, and so on.

Bailey's difference-in-differences results suggest that access to oral contraception at
an age when women are making consequential life decisions does in fact have impor-
tant effects. In particular, she estimates that access to oral contraceptives before age
twenty-one reduced the likelihood of becoming a mother before age twenty-two by 14
to 18 percent and increased the likelihood that a woman was participating in the paid
labor force in her late twenties by 8 percent. Moreover, women who had access to oral
contraception before the age of twenty-one worked about seventy more hours per year
in their late twenties. That is, by providing a way to delay and plan childbearing, oral
contraception appears to have given women the freedom to pursue longer-term careers
and work more.
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Useful Diagnostics
As we've said, for difference-in-differences to yield an unbiased estimate of an aver-

age treatment effect, we need parallel trends. That is, in the counterfactual world where
the treatment did not change, the difference in average outcomes would have stayed the
same between the units where the treatment did in fact change and the units where it
did not. Since we dont observe that counterfactual world, we cant know if that's true.
So a careful analyst always wants to do whatever is possible to probe the plausibility of
parallel trends.

One conjecture is that if parallel trends holds, we should see similar trends in out-
comes in earlier periods, before any units changed treatment status. We can check these
pre-treatment trends (often called pre-trends) directly by comparing the trend in out-
comes for units that do and do not change treatment status later on. We can also do this
in a regression framework by including a lead treatment variable—that is, a dummy
variable indicating the treatment status in the next period. If the trends are indeed par-
allel prior to the change in treatment, the coefficient on the lead treatment should be
zero and the coefficient on the treatment variable should not change when we include
that lead treatment variable in the regression.

We can also relax the requirement ofparallel trends a bit by allowing for the possibil-
ity that different units follow different linear trends over time to see if this changes our
results. The specific details for how you implement this are not important for now (you
can read about them in a more advanced book). But you can see that there are various
strategies for probing a difference-in-differences analysis to see whether parallel trends
seem plausible.

Remember that diagnostic tests of this sort are a complement to, not a substitute for,
clear thinking. The most important defense of an assumption like parallel trends must
be a substantive argument. Why did the treatment change in some units and not in oth-
ers? Does that reason seem likely to be related to trends in the outcome or independent
of trends in the outcome? Can you think of reasons that units might have changed their
treatment right as they expected the outcome to change for other reasons? These are
critical questions whose answers require deep substantive knowledge of your context,
question, and data. Good answers are absolutely essential to assessing how convincing
the estimates that come out of a difference-in-differences are.

To get a better sense ofhow one thinks through questions about parallel trends, lets
look at a couple examples.

Do Newspaper Endorsements Affect Voting Decisions?
Newspapers regularly endorse candidates for elected office. Do such endorsements

matter?

A study by Jonathan Ladd and Gabriel Lenz attempted to answer that question using
a difference-in-differences design with data from the United Kingdom. Their study pro-
vides a nice illustration of how to test for parallel pre-trends as a diagnostic for the
plausibility of the parallel trends assumption.

During the 1997 general election campaign in the United Kingdom, several newspa-
pers that historcially tended to endorse the Conservative Party unexpectedly endorsed
the Labour Party. Ladd and Lenz utilize this rare shift to estimate the effect ofnewspaper
endorsements on vote choice.
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Figure 13.1. Visualizing pre-trends and using difference-in-differences to estimate the effect of news-
paper endorsements on vote choices.

Implementing a difference-in-differences design, they compare changes in vote
choice for those who regularly read a paper that unexpectedly switched its endorsement
to Labour to changes in vote choice for those who did not regularly read one of those
papers. Because they had data measuring partisan support of the same British individ-
uals in 1992, 1996, and 1997, they were able to examine the pre-trends to see if they
were parallel. If people who did and did not read the papers that switched to Labour
between 1996 and 1997 were already trending differently between 1992 and 1996, that
would make us worried that the parallel trends assumption is violated (and perhaps we'd
worry the newspapers switched because their readers were trending toward Labour).
But if these two groups were on similar trends between 1992 and 1996, that would give
us more confidence that any resulting difference-in-differences is attributable to the
unexpected newspaper endorsement in 1997.

Ladd and Lenzs diagnostics are reassuring, as shown in figure 13.1. People who read
a paper that would later switch to endorsing the Labour Party had very similar trends in
their level ofLabour Party support between 1992 and 1996. But between 1996 and 1997,
when the newspapers unexpectedly supported the Labour Party, the voters who read
those papers significantly increased their support for the Labour Party relative to those
who didn t read those papers. Thus, as long as we don t have reason to believe that other
things, besides these surprise endorsements, changed differentially for readers of dif-
ferent newspapers in 1996, we might reasonably interpret the difference-in-differences
as an estimate of the causal effect of those endorsements.

Is Obesity Contagious?
Humans are social animals. We live embedded in a complex web of relationships.

Increasingly, we are told, our networks define who we are. A growing body of research
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claims to measure exactly how our thinking, tastes, and behavior are determined by our
social networks.

Perhaps the most well-known of this research is authored by Nicholas Christakis
and James Fowler. What is striking about Christakis and Fowler s work is that they find
that behaviors and characteristics that many of us think of as profoundly personal—
smoking, drinking, happiness, obesity—all appear to be network characteristics. Or, to
use their more colorful language, "Obesity is contagious."

In a study of the spread of obesity in social networks, published in the New England
Journal ofMedicine, Christakis and Fowler examine the relationship between a change
in a persons weight and changes in their friends', family members', or neighbors' weight.
They make these comparisons controlling for personal characteristics like age, gender,
and education.

What do they find? The chance that a person becomes obese is 57 percent higher if
that person has a friend who becomes obese than if that person does not have a friend
who becomes obese. Friendship seems to matter more than familial ties when it comes
to weight gain. If a person has a brother or sister who becomes obese, that persons
chance ofbecoming obese increases by 40 percent. If a persons spouse becomes obese,
that persons chance ofbecoming obese increases by 37 percent. Having obese neighbors
has no effect. On the basis ofthese findings, the New York Times declared in a front-page
article, "The way to avoid becoming fat is to avoid having fat friends." Christakis and
Fowler didn't love this interpretation. Instead, the Times reported, Christakis suggested,
"Why not make friends with a thin person... and let the thin persons behavior influence
you and your obese friend?"

It seems indisputable that your behavior is affected by those with whom you inter-
act, that their behavior is affected by those with whom they interact, and so on. In this
sense, we are entirely with Christakis and Fowler—we are all influenced by our social
networks. But these authors, and many other scientists who study network effects, are
making a claim stronger than just the commonsensical observation that our interac-
tions affect how we behave. They are claiming to measure and quantify that effect. How
do they claim to do so?

Christakis and Fowlers approach is effectively a difference-in-differences design.
They test how changes in one persons obesity correspond to changes in another per-
sons obesity. So if we want to think clearly about whether these are credible estimates
of a contagion effect, we need to think about whether we find the assumption ofparallel
trends plausible.

Recall what parallel trends says here. It requires that, in the counterfactual world
where there was no change in treatment (i.e., no ones friends became more or less
obese), the trend in outcomes (personal obesity) would have been the same on average
among people who in fact experienced a change in treatment (i.e., whose friends' obesity
changed) and people who did not experience a change in treatment (i.e., whose friends'
obesity did not change). Ifparallel trends holds, then Christakis and Fowler's difference-
in-differences yields an unbiased estimate of the effect of your friends' obesity on your
obesity. But if the trends are not parallel, then their estimates are biased, since some
of the difference-in-differences they are observing and attributing to network effects
would have happened even if your friends' obesity hadn't changed.

One concern often raised about studies ofnetwork effects is what medical researchers
call homophily. People with similar characteristics tend to group together. Suppose you
find that people whose friends are smokers are more likely to be smokers themselves.
Social network researchers might want to interpret this as evidence that having friends
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who smoke causes you to become more likely to smoke. But, for that conclusion to
be warranted, we'd have to be comparing apples to apples. That is, other than how
their friends behave, people in the social networks of smokers and people in the social
networks of non-smokers would have to be essentially the same. If members of net-
works of smokers were already more likely to be smokers than members ofnetworks of
non-smokers, we'd be comparing apples to oranges.

It seems entirely plausible (indeed likely) that people who are members of networks
of smokers are, independent of their friends, already more likely to be the sort ofpeople
who smoke because of homophily. Smokers might well meet their friends in bars that
allow smoking, in the outside area at work or school where people gather to smoke,
or in other smoker-friendly environments. Put differently, it might not be that having
friends that smoke causes you to smoke. It might be that being a smoker causes you to
have friends that smoke. Because people don t choose their social networks randomly,
when we compare people in smoking networks to people in non-smoking networks, we
aren't comparing apples to apples.

But homophily, alone, is not enough to create a problem for Christakis and Fowler's
difference-in-differences design. That design accounts for fixed characteristics ofunits,
such as the possibility that obese people tend to be friends with each other and smokers
tend to hang out together. This is one ofthe great things about difference-in-differences.
Their finding is more compelling than just comparing people with more overweight
friends to people with fewer overweight friends. They show that when one person
becomes obese, their friends are also more likely to become obese. For homophily to
create a problem, it has to be because of a worry about parallel trends not holding. For
instance, if people who are on the path to becoming obese (perhaps because they have
similar diets, exercise habits, genetic predispositions, cultural pressures, and so on) are
more likely to be friends with each other, that would be a violation of parallel trends.
And if parallel trends is violated, difference-in-differences doesn't yield an unbiased
estimate of the causal effect.

We cant know whether homophily creates violations of parallel trends. But there is
some evidence that points toward the possibility that difference-in-differences is not
unbiased here. Ethan Cohen-Cole and Jason Fletcher conducted a study of the spread
of two individual characteristics—height and acne—in social networks. Using the same
difference-in-differences approach that Christakis and Fowler use to argue for the social
contagion of divorce, loneliness, happiness, obesity, and many other things, Cohen-
Cole and Fletcher find that both height and acne appear contagious in social networks.
Knowing what we do about height and acne, it is pretty hard to believe that their spread
is actually caused by social interactions within a network. This is Cohen-Cole and
Fletcher's point. Height and acne likely don t spread in a social network. Instead, their
apparent social contagion almost surely results from violations of parallel trends, per-
haps due to homophily. Having friends with acne doesn t give you acne; people at high
risk for acne tend to hang out together. The same may well be true for obesity, divorce,
happiness, and so on.

To be clear, we're not saying that we think there are no causal network effects. Indeed,
we're certain there are. Furthermore, Christakis and Fowler's study is surely more con-
vincing because they compared changes to changes, rather than simply showing that
obese people are more likely to be friends with each other. But there are lots of ways in
which parallel trends could be violated. So we must be cautious and think clearly about
those possibilities before interpreting the results of a difference-in-differences design as
an unbiased estimate of the true causal effect.
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Difference-in-Differences as Gut Check

Sometimes difference-in-differences analyses can be useful as a way to probe the
credibility of a causal claim. Imagine a scenario in which someone estimates the corre-
lation between a treatment and an outcome, perhaps even controlling for some possible
confounders. You, thinking clearly about the lessons ofchapter 9, might be skeptical that
a causal interpretation of this estimate is warranted. Maybe you can think of a bunch of
other confounders that aren t observable and, so, can t be controlled for. Even with such
arguments, it can be hard to convince people to take your concerns seriously.

But if the data include multiple observations of the same unit, difference-in-
differences can provide a useful gut check.1 If the treatment really has an effect on
the outcome, then we should expect a correlation not just between treatment and out-
come but between changes in treatment status and changes in outcome. That is, we
should expect the relationship between treatment and outcome to still be there in a
difference-in-differences analysis.

Even if you find a relationship in the difference-in-differences, you still might not
be sure about the causal interpretation. For that, you'd want to think about paral-
lel trends. But if the relationship disappears in the difference-in-differences, then you
have bolstered the case for your skepticism. It would seem that differences between
units other than the treatment account for the correlation in the data. To see how

difference-in-differences can be used for a gut check, let s look at an example.

The Democratic Peace

At least since the philosopher Immanuel Kant wrote Perpetual Peace, theorists have
argued that democracy leads to peace—or, in its more contemporary formulation, that
democracies will be more reluctant to fight one another than they are to fight autocracies
or than autocracies are to fight one another. Some argue that this is because democracies
share common norms that prevent them from engaging in violence against one another.
Others argue that various features of domestic politics constrain democratic leaders
from waging war against other democrats.

Empirical scholars have been similarly fascinated by the relationship between
democracy and war. And the finding that country pairs (called dyads) where both
countries are democratic are less likely to fight wars with one another than are dyads
where at least one country is not democratic is one of the most important and discussed
empirical findings in the literature on international relations.

Let s think a little about that empirical literature and its findings. A first thing scholars
have done to try to assess the democratic peace is to simply look at the correlation
between democracy and war. We'll start by replicating that approach. Here's how.

We start with a big data set that has an observation for every dyad in every year. So
an observation is a dyad-year. We are going to work with data from 1951-1992 because
those are the years one of the most famous papers in this literature works with. For
each dyad-year, we have a binary variable that indicates whether that dyad had a mil-
itarized interstate dispute (MID) in that year. That is our dependent variable. And for
each country we have a measure ofhow democratic it is. We use the Polity score, which
you may recall from chapter 2 is a standard measure of the level of democracy. Higher
numbers indicate a more democratic country. For estimating the democratic peace, we

It's a gut check because your newly honed clear thinking skills are telling you to always be a bit skeptical.
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Table 13.7. The relationship between democratic dyads and war with and without controls and with
and without year and dyad fixed effects.

Minimum Level of Democracy in Dyad

Countries Are Contiguous

Log (Capability Ratio)

Minimum 3-Year GDP Growth Rate

Formal Alliance

Minimum Trade-GDP Ratio

Includes Year Fixed Effects

Includes Dyad Fixed Effects
Observations

r-squared

1

-.0082**

(.0016)

93,755
.0011

2 3

Dependent Variable = MIDs

-.0066**

(.0016)
.0693**

(.0110)
.0006

(.0005)
-.0001

(.0002)
-.0012

(.0027)
-.0045**

(.0017)

93,755
.0289

.0002

(.0017)
.0002

(.0017)

/

/

93,755
.2636

4

.0005

(.0017)
.0648**

(.0227)
.0024

(.0019)
-.0005**

(.0002)
-.0095

(.0067)
.0011

(.0021)

/

/

93,755
.2658

Standard errors are in parentheses. ** indicates statistical significance withp < .01.

don t want to know how democratic any one country is. We want to know whether a
dyad contains two democracies in a given year. To get at this, we use the lower of the
two Polity scores within each dyad. Ifboth countries in a dyad are democratic, then the
lower of the two scores will be high. If at least one country in a dyad is not democratic,
then the lower of the two scores will be low. We put this variable on a scale from 0 to 1
so we can interpret the coefficients as the estimated effect of going from the lowest to
the highest level of democracy. This measure, which we refer to as the minimal level of
democracy in a dyad, is our treatment variable.

To see the correlation between war and democracy, we regress MIDs on the minimal
level ofdemocracy. Figuring out the correct standard errors in this regression is actually
a bit tricky, since surely there is correlation between whether, say, France and Germany
have a war in a given year and whether England and Germany have a war in that same
year. But we aren t going to worry about those issues for the moment.

The first column of table 13.7 shows the results of this regression. We find a sta-
tistically significant negative correlation between being a democratic dyad and war.
The regression coefficient of —.0082 says that if we compare a dyad where the less
democratic country is among the least democratic countries to a dyad where both
countries are among the most democratic countries, the probability of there being a
war between the two countries in a given year is about eight-tenths of a percentage
point lower. Since the overall probability that any given dyad is at war in any given
year is only about eight-tenths of a percent to start with, that is an enormous estimated
relationship.
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Now, we hope that this evidence doesn't convince you there is a causal effect of
democracy on war. The lessons about confounders from chapter 9 are still important.
And we can think of lots of ways that democracies and autocracies are different that
might matter for war.

Scholars are aware of this concern. And the standard approach to addressing it is to
try to control for various characteristics of a dyad that correlate with being democratic
and with war. For instance, studies commonly control for whether the countries are
contiguous, their relative military capabilities, their GDP growth, whether countries
are allied, how much countries trade, and so on. Of course, we also shouldn't forget the
lessons of chapter 10. Some of these things may be mechanisms by which democracy
affects war, rather than confounders, in which case they shouldn't be controlled for.
But, to stick close to the literature, in the second column of table 13.7, we control for
these variables. As you can see, once we control, the estimated relationship between a
democratic dyad and war drops a little bit. But it is still strongly negative and statistically
significant.

At this point, many scholars conclude that Kant and other theorists are on to some-
thing. There really is a causal effect of being a democratic dyad on going to war. That
might be true, but we are certainly entitled to remain skeptical. After all, there are so
many features of a dyad that are hard to measure. And any number of them might
affect both whether the two countries are democracies and whether they go to war.
Indeed, a study by Henry Farber and Joanne Gowa claims that the empirical pattern
associated with the democratic peace does not appear in the data prior to World War
II precisely because key confounding variables took different values during this earlier
period.

Controversies like this are where difference-in-differences can help us. If the theories
of the democratic peace are right, then we shouldn't just observe a negative correlation
between being a democratic dyad and war. We should observe a change in the likelihood
two countries go to war as the dyad becomes more jointly democratic. That is, we should
continue to see the correlation we've already observed in a difference-in-differences
analysis. If we don't, we have reason to worry about bias—that is, that the estimated
correlation reflects the influence of unobserved confounders rather than a true causal
effect.

This argument was made in an influential, and controversial, paper by Donald Green,
Soo Yeon Kim, and David Yoon. And so, in columns 3 and 4 oftable 13.7 we implement a
difference-in-differences design for the case ofN observations and N time periods. We
do so using fixed effect regression, including fixed effects for each dyad and for each
year. Column 3 reports the difference-in-differences with no other control variables.
Column 4 includes the fixed effects and the controls.

As you can see, once we compare the change in war to the change in whether a dyad is
democratic, the correlation disappears. The difference-in-differences finds no meaning-
ful or statistically significant relationship between democracy and war. Our gut check
failed. As we've emphasized, this doesn't mean that there is definitely no causal effect.
But it does mean that the existing evidence does not make a compelling case for one.
By simply checking the difference-in-differences, we come away with a very different
picture from the one painted by the simple correlations.

Many scholars who believe in the democratic peace have criticized Green, Kim, and
Yoon's argument and the use of difference-in-differences designs to answer questions
about international relations. One common critique is that difference-in-differences
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ignores most of the variation in the treatment variable, making it hard to find evidence
of a relationship.

This is true. The regressions in columns 1 and 2 of table 13.7 make use of a lot of
variation in democracy to try to detect a relationship between democracy and war—
they use variation over time, variation between dyads, and variation within dyads. The
regressions in columns 3 and 4 just use the variation within dyads, holding constant
differences between dyads and global changes over time. But some of the variation
exploited in columns 1 and 2 is probably not very informative about the causal effect
of democracy because there are so many other things that are changing over time and
that differ between dyads. So yes, difference-in-differences ignores a lot of the variation
and attempts to isolate the variation that is most informative for assessing the effect of
democracy on war—namely, the within-dyad variation.

It's also worth noting that this critique would have more bite if the difference-in-
differences estimates were far less precise than the other estimates. This would indicate
that there is a lot less information about the relationship between democracy and peace
in the difference-in-difference estimates. But the estimated standard errors on the min-

imum level of democracy variable in table 13.7 are only slightly larger in columns 3
and 4 than in columns 1 and 2. Its not as if, in doing the difference-in-differences, we
threw up our hands and concluded that we just don t know anything about the rela-
tionship between democracy and war. The difference-in-differences design allows us to
obtain reasonably precise estimates of the effect of democracy. And those estimates are
very close to zero. Furthermore, the difference-in-differences estimates are statistically
significantly different from the estimates in columns 1 and 2. So imprecision does not
account for the disparate results obtained by these two approaches.

Wrapping Up
We've seen that changes in treatment over time can allow us to more credibly estimate

the effects ofthat treatment using a difference-in-differences design. For this to work we
need for the parallel trends condition to hold—it has to be that, had it not been for the
change in treatment status, the average outcomes for units that did and did not change
treatments would have followed the same trend. There are several useful diagnostic tests
to help analysts assess whether this assumption is plausible, but there is no substitute
for clear thinking and substantive knowledge.

The last four chapters have been dedicated to methods for obtaining more credi-
ble estimates of causal relationships. Estimating causal relationships is a difficult and
noble task. But often we want to know more. We aren't satisfied just knowing that the
treatment did have an effect. We want to know why. The next chapter addresses the
important challenge of answering such why questions using quantitative evidence.

Key Terms
• Difference-in-differences: A research design for estimating causal effects when

some units change treatment status over time but others do not.
• Parallel trends: The condition that average potential outcomes without treat-

ment follow the same trend in the units that do and do not change treatment
status. This says that average outcomes would have followed the same trend
had it not been for some units changing treatment status. If parallel trends
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doesn't hold, difference-in-differences does not provide an unbiased estimate
of the ATT.

• First differences: A statistical procedure for implementing difference-in-
differences. It involves regressing the change in outcome for each unit on the
change in treatment for each unit.

• Wide format: A way to structure a data set in which each unit is observed
multiple times, where each row corresponds to a unique unit.

• Long format: A way to structure a data set in which each unit is observed
multiple times, where there is a row for each unit in each time period.

• Fixed effects regression: A statistical procedure for implementing difference-
in-differences. It involves regressing the outcome on the treatment while also
including dummy variables (fixed effects) for each time period and for each
unit.

• Pre-trends: The trend in average outcomes before any unit changes treatment
status. Ifpre-trends are not parallel, it is harder to make the case that the parallel
trends condition is plausible.

• Lead treatment variable: A dummy variable indicating that treatment status
in a unit will change in the next time period.

Exercises

13.1 For years, the state of Illinois has administered the Illinois State Aptitude Test
(ISAT) to third, fifth, and eighth graders. For much of this time, the test was
relatively low stakes—not tied to promotion to the next grade, teacher com-
pensation, school resources, and so on. The stakes changed in 2002, when the
ISAT became the test that the Chicago Public Schools used to comply with the
federal No Child Left Behind law.

Consider two cohorts of students: students who were fifth graders in 2001
and students who were fifth graders in 2002. Both of these groups of stu-
dents took the ISAT in third grade when it was low stakes. The students who
were in fifth grade in 2001 also took the ISAT in fifth grade when it was low
stakes. But the students who were in fifth grade in 2002 took their second
ISAT when it was high stakes. Make a two-by-two table showing how we
could learn about the average effect of high-stakes testing on student test
scores using a difference-in-differences design ifwe had data on the average
test scores of these two cohorts of students when they were fifth and third
graders.

13.2 The Nike Vaporfly shoe has been controversial in the world of elite long-
distance running because some argue that the shoe provides an unfair
advantage to those who use it, and it makes previous records obsolete. Suppose
you had data from many different marathons that indicated each runner s time
and also which shoes each runner wore. How could you estimate the effect of
the Nike Vaporfly? You'd want to be sure to account for the fact that marathon
times vary from day to day and course to course. You'd also want to account
for the fact that some runners are just better and faster than others.

(a) What analyses would you conduct to separate the effect of shoe tech-
nology from other factors, and what assumptions would you have to
make?
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(b) Do you find those assumptions plausible? Discuss your potential
concerns.

(c) Is there anything you can do to address these potential concerns?
(d) Another challenge is that not everyone who starts a marathon fin-

ishes it, so you could have attrition in your study. What could you do
to address this potential problem?

(e) Could you use the same approach to estimate the effect of a new shoe
or glove technology on points scored in professional boxing? Why or
why not?

13.3 Suppose we want to estimate the extent to which the policy positions of
Democratic and Republican candidates for Congress diverge. In other words,
we'd like to know how differently the Democratic and Republican candidate
would represent the same set of constituents.

(a) Suppose we measured how conservatively each member of Congress
voted on bills and ran a regression of roll-call voting on an indica-
tor for being a Republican. Would this be a satisfying way to estimate
divergence? What kinds ofbias would you worry about?

(b) Download "CongressionalData.csv" and the associated "README.txt,"
which describes the variables in this data set, at press.princeton.edu
/thinking-clearly. This data set contains information on congressional
elections and roll-call voting behavior. Using only the variables avail-
able in the provided data set, try to estimate divergence by controlling
for confounders. If it helps, you may want to only analyze just one
congressional session at a time.

(c) Using the data available, now estimate divergence using a regression
discontinuity design. Again, you might find it helpful to focus on just
one congressional session at a time.

(d) Finally, estimate divergence using a difference-in-differences design.
(e) Compare and contrast these three different approaches. Which one

estimates divergence with the most defensible assumptions? How much
do your estimates depend on your design?

13.4 In a study of sex-based discrimination in hiring, Claudia Goldin and Cecilia
Rouse study the effect of making auditions for symphony orchestras "blind"
by putting candidates behind a screen. The idea is, if the people evaluating the
audition cant observe the sex of the person auditioning, they shouldn't be able
to discriminate.

It turns out, as Goldin and Rouse document, that different orchestras
adopted the practice of using such a screen at different times. Lets think about
how we could use that fact to learn about the causal effect of the screens. (We'll
talk through a somewhat different empirical approach than the one Goldin
and Rouse use.)

(a) Suppose for each orchestra and each year you observed the share of
new hires for that orchestra who were women and whether or not that

orchestra used a screen in its audition. If you just pooled together all
of your data and regressed share ofwomen on using a screen, would
you feel comfortable giving the output of that regression a causal
interpretation. Why or why not?
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(b) Suppose, instead, you wanted to use a difference-in-differences design
with this data. What regression would you run?

(c) Describe the assumptions that would have to be true for this to give you
an unbiased estimate of a causal effect. (Don't just say "parallel trends";
describe what would have to be true about the world for parallel trends
to hold.)

(d) Does this assumption seem plausible to you? What kinds of concerns
would you have?
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CHAPTER 14

Assessing Mechanisms

What You'll Learn

• Estimating an average causal effect doesn t tell us why or how that effect arises.
• Learning about the mechanisms underlying a causal relationship is harder than

it seems. Generally, we cant just measure potential mechanisms and learn
which ones are most important.

• Combining theory, measurement, and clear thinking can help us learn about
the mechanisms underlying causal relationships.

Introduction

As we discussed in chapter 3, when we say that a treatment affects an outcome, all we
mean is that a change in the treatment changes the outcome. But that effect need not be
direct or proximate—the effect of some event on some outcome could be the result of
a long chain of relationships. So, in many settings, even once we've credibly estimated
a causal relationship, we might remain uncertain why or how the treatment affects the
outcome.

For example, suppose we found that attending charter schools rather than regular
public schools causes an increase in the likelihood that students go to college. That's
an interesting, policy-relevant finding. It tells us that, on average, charter schools are
helping students. But it doesn t tell us how—that is, it doesn t tell us the mechanisms by
which charter schools help students. Maybe the curriculum is more innovative, maybe
students benefit from having more motivated peers, maybe discipline is stricter,
maybe the facilities are nicer, maybe there are more advanced placement (AP) classes,
maybe the students are better prepared for standardized tests, maybe there are more
opportunities for after-school enrichment, or maybe the school motivates the students
to work harder. People typically think of mechanisms as answers to how questions
("How did this effect arise?") or why questions ("Why did this happen?").

Randomizing students into charter schools versus public schools, or employing some
other compelling research design, allows us to assess the average effect of going to a
charter school. But it won t unpack which mechanisms are doing the work. Sometimes,
understanding the mechanisms is important. For instance, ifwe are going to try to build
more charter schools, we would like to know which features of existing charter schools
are the most important to replicate. Should we make sure that there are nicer facilities,
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Figure 14.1. AP classes may be one of the mechanisms by which charter schools affect college attendance.

more AP classes, more standardized test prep, or stricter discipline? In this chapter, we
consider some of the difficulties in trying to learn not just about effects but also about
the mechanisms underlying those effects.

Causal Mediation Analysis
One approach that some researchers take to try to get at causal mechanisms is called

causal mediation analysis. In causal mediation analysis, the goal is for the data to directly
tell us how important a role some mechanism plays in driving a particular effect.

Figure 14.1, which recalls our illustration of mechanisms in figure 9.9, illustrates the
idea. Suppose, for instance, that we want to know how much of the effect that attending
a charter school has on college admission is due to charter school students taking more
AP classes. In our earlier language, attending a charter school is the treatment and col-
lege admission is the outcome. We call taking AP classes a mediator—a mechanism by
which charter schools have their effect on college admission. The idea is that attending
charter schools affects taking AP classes and taking AP classes affects college admission.
So some of the effect of attending a charter school on college admission runs through
the AP class mechanism. We'd like to know how much of the effect is due to AP classes

(represented by the arrows from charter schools to AP classes to college attendance)
and how much is due to other factors (represented by the arrow directly from charter
schools to college attendance).

If you werent thinking clearly, you might be tempted to use the techniques from
chapter 10 to try answer this question. You'd start by using an admissions lottery to
estimate the effect of attending the charter school on college admission. You can do so
by regressing college admission on winning the charter school admissions lottery for the
set of students who were entered into the lottery. Then you'd measure the number ofAP
classes each student took and re-run the regression ofcollege admission on winning the
charter school lottery, but controlling for AP classes. The thought is that, ifthe estimated
effect ofcharter schools shrinks once you control for AP classes, then that portion ofthe
effect that disappeared is attributable to the AP class mechanism since, by controlling
for AP classes, you are effectively holding them constant so that they are statistically
removed from your estimate of the effect.

This idea might initially sound sensible. We are trying to figure out how much of
the effect of charter schools on college admission runs through AP classes. We'd like
to compare the effect of charter schools on college admission to the effect of charter
schools on college admission purged of the effect of taking AP classes. So why won t it
work?
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The basic problem is that controlling for AP classes is not the same as purging their
effect. You can see this just by thinking conceptually. To purge the effect of AP classes
from the effect of attending a charter school on college admission, surely we must
have a way of estimating the effect of taking AP classes on college admission. But we
have described no research design to do so. Lets try to think that through as clearly as
we can.

The charter school admissions lottery lets us estimate the effect of charter school
attendance on college admission. It also lets us estimate the effect of charter school
attendance on taking AP classes. But what lets us estimate the effect of taking AP
classes on college admission? We are sure that you can think of lots of confounders for
the relationship between how many AP classes a student takes and whether that stu-
dent is admitted to college. So just regressing college admissions on AP classes surely
won t do it.

To see why this is a problem, lets think about an extreme version of what could go
wrong. Suppose that charter schools indeed cause students to take more AP classes, but
that AP classes have no effect whatsoever on college admissions. (This is, of course, just
for the sake of argument.) So, if our controlling strategy works to identify the impor-
tance of the mechanism, then we should find no difference between the effect ofcharter
school attendance on college admission, whether or not we control for AP classes (since
it is not in fact one of the mechanisms). But suppose taking AP classes happens to be
correlated with academic talent (which we don t have a measure of) and that academic
talent affects college admissions. Now, when we run the regression of college admis-
sions on charter school attendance and AP classes, we will find that the estimated effect
of going to a charter school is indeed lower when we control for AP classes. This is
because AP classes are proxying for (i.e., measuring) academic talent. From this sta-
tistical result, we will wrongly conclude that allowing students to take AP classes is,
therefore, an important mechanism by which charter schools cause college admissions.
But, in fact, weVe stipulated that AP classes have no effect. Taking AP classes just hap-
pens to be correlated with things like talent that are also correlated with getting into
college. Our controlling strategy, therefore, was misleading. If we don t think clearly
about this type ofanalysis, we could end up making bad decisions about how to allocate
resources or design schools.

A literature delves into what kinds ofconditions you would need to have causal medi-
ation analysis work. Without going into the technical details, it boils down to something
along the lines ofhaving research designs that allow you to separately estimate the effect
of the treatment on the outcome, the effect of the treatment on the mechanism, and
the effect of the mechanism on the outcome. If you can estimate these quantities, you
can net out the effect of the treatment on the outcome that runs through the mecha-
nism. The key takeaway, of course, is that there is no magical technical or statistical way
to identify which mechanisms matter. If we want to learn about mechanisms, just like
when we wanted to learn about causal effects, we are going to have to work hard and
think clearly.

Intermediate Outcomes

One thing an analyst can do is test for the effect of their treatment on other, perhaps
more intermediate outcomes that might provide some hints about mechanisms. Once
you have a research design that allows you to estimate the effect of some treatment, it
can, in principle, be applied to any downstream outcome that you can measure.
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So, to partially assess mechanisms, we can see which intermediate outcomes appear
to be affected by the treatment. Returning to our example, we can use the charter school
lottery to assess the effect of going to a charter school not just on college admission
but also on intermediate outcomes like study habits, extracurricular participation, stan-
dardized test scores, taking AP classes, and so on. Of course, this doesn't give us a way
to assess the effect of those intermediate outcomes on the final outcome (here, college
admissions). For that, we'd need a separate research design. So, for reasons just dis-
cussed in the last section, this approach won t tell us exactly how much of an effect is
explained by one mechanism or another. But it can allow us to make some progress in
thinking about which mechanisms likely do or do not help us understand the effect.
For instance, if it turns out that attending a charter school has no effect on taking AP
classes, it seems unlikely that AP classes are one of the mechanisms by which charter
schools affect college admissions.

One real-world example of using intermediate outcomes comes from research in
Liberia by Chris Blattman, Julian Jamison, and Margaret Sheridan.

Cognitive Behavioral Therapy and At-Risk Youths in Liberia
Blattman, Jamison, and Sheridan randomly assigned some Liberian young men who

were thought to be at risk for engaging in crime or violence to cognitive behavioral ther-
apy, with the hope of improving economic outcomes and reducing crime and violence.
The therapy appears to have worked well, significantly improving both outcomes. That
is good news for the therapy program that Blattman, Jamison, and Sheridan were study-
ing. But in addition to knowing that the therapy worked, it would be nice to know how
or why it worked. The treatment lasted as long as eight weeks and included work on
a variety of skills, from self-control to personal appearance. Some of the interventions
even included monetary compensation. So there are a lot of different features of the
treatment that could explain the result. And if you were going to try to transport this
evidence elsewhere, you'd want to know which features of this program are important
and which ones are incidental.

As we've discussed, there's no way to know with certainty which features of the
intervention led to the overall effect. But the authors did measure a number of inter-

mediate outcomes that might help to elucidate the mechanisms and aid practitioners
who would like to apply the lessons elsewhere. Interestingly, the authors found little
evidence that the therapy affected subjects' self-control skills, such as impulsiveness,
perseverance, and conscientiousness. Therefore, they conclude that these self-control
skills are unlikely to be an important mechanism through which the therapy reduced
violence or improved economic outcomes. By contrast, they did find that their inter-
vention had a large effect on other intermediate outcomes, such as social networks
and attitudes toward violence. This suggests that these mechanisms are more likely to
explain the success of the treatment and might be more important to replicate in other
settings.

To be clear, this study does not show that self-control skills have no effect on eco-
nomic well-being or violence. They might have very large effects. The research instead
shows that the particular intervention under study had little effect on self-control skills
and therefore self-control skills are unlikely to explain the large effects of the inter-
vention on economic well-being or violence. Furthermore, if future practitioners were
hoping to replicate the success of this behavioral therapy in Liberia, they might learn
from this that, for whatever reason, they won't have much success changing self-control
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skills, so they might be better offfocusing more on other factors like social networks and
attitudes toward violence, which seem to be the places where this particular approach
has the most bite.

Independent Theoretical Predictions
Another way to get at specific mechanisms is to think theoretically and generate

independent tests that might help adjudicate between different potential mechanisms.
In chapter 7, we discussed how we could use independent theoretical predictions to
probe whether some estimated effect was the result ofnoise (i.e., a false positive). There,
we gave the example of re-examining the putative effect of college football games on
elections. The idea here is similar. But now, instead of testing whether an observed rela-
tionship is genuine or spurious, we want to look for the mechanisms underlying an
estimated effect that we believe is genuine.

A study by Sarah Anzia and Chris Berry illustrates how this can work.

Do Voters Discriminate Against Women?
There is much concern about the possibility of discrimination in the electoral pro-

cess. For example, are voters biased against female candidates? Answering this question
compellingly is difficult for obvious reasons. Discriminatory voters may not reveal
their prejudices in surveys. And in real elections, there could be factors other than
discrimination that could explain why women do better or worse than men.

Some scholars have noticed that in the United States, when female candidates run for
office, they perform similarly to male candidates on average. This, they argue, suggests
there may be little discrimination by voters. However, Anzia and Berry point out that
if there is discrimination, we might expect that only the most qualified women will
decide to run for office, which could explain why women do about as well as men even
in a world with discrimination. So the fact that women perform as well as men, when
they run, doesn't necessarily imply that voters aren t discriminating.

Continuing with this line of thinking, Anzia and Berry try to generate theoretical
predictions that should hold if there indeed is discrimination against women in elec-
tions. One prediction is that if there is discrimination, all else equal, the women who
are elected to office should be better at their jobs than the men who get elected. Because
ofdiscrimination, they will have to be better in order to get elected. Of course, we don t
have perfect measures ofjob performance. But Anzia and Berry look at several measures
ofhow members of Congress perform, including the number ofbills they sponsor and
also the amount of federal spending they bring home to their districts. The results are
exactly in line with the theoretical prediction. Using a difference-in-differences design,
they show that, on average (accounting for differences across districts and time peri-
ods to make the comparison as apples-to-apples as possible), women perform better in
Congress than men, consistent with the possibility that women have to clear a higher
hurdle in order to get elected because ofvoter discrimination.

Having uncovered an interesting and compelling phenomenon, Anzia and Berry
push further still. The evidence is pretty clear that, on average, female members of
Congress are more productive than male members of Congress, and discrimination is
a potential explanation. But are there other mechanisms that could potentially explain
this effect? What if, for example, women are just better at some parts ofthe job than men,
regardless of any selection or discrimination? Or what ifwomen are treated differently
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once they get to Congress, not because of their ability but because they are viewed as a
token minority?

To address these kinds of questions, Anzia and Berry keep thinking. If its really dis-
crimination that explains this result, are there further theoretical predictions that they
can test? One prediction is that the gap in performance between elected women and
men should be greater the more discrimination women face. Of course, we dont know
for sure which congressional districts discriminate more. But one reasonable hypothe-
sis is that more conservative districts will discriminate against female candidates more
than more liberal districts. Therefore, Anzia and Berry test whether the difference in
performance in Congress between men and women is greater in more conservative
districts, as measured by how the district votes in presidential elections. The answer
is yes.

To provide further evidence of their purported mechanism, Anzia and Berry note
that one large group of female congressional representatives—those who gained office
because they were the widow ofa recently deceased member ofCongress—likely did not
have to overcome the same type of discrimination as other female candidates. As such,
we would not expect them to be more qualified on average. And sure enough, Anzia and
Berry find that widows do not perform better than male members ofCongress and their
performance is notably worse than female candidates who were elected independent of
their spouses.

The compellingness of the Anzia and Berry study comes not from a single, airtight
research design or statistical test demonstrating the presence ofdiscrimination. Rather,
they elucidate an interesting and plausible mechanism by generating a theory of dis-
crimination in elections and testing multiple, independent predictions that follow from
that theory.

Of course, this still doesn't settle the matter. Other mechanisms might also account
for the observed patterns. For instance, a variety of scholars point to evidence that
women may under-estimate their abilities or be averse to putting themselves forward as
candidates. These mechanisms might also account for female representatives perform-
ing better in their jobs, conditional on winning election. So there is still lots ofwork to
do in figuring out which mechanisms are at work. But, in our view, this study provides
a model for using a combination of clear thinking and data analysis to try to provide a
better understanding of causal mechanisms.

Testing Mechanisms by Design
In some special circumstances, we can design studies in ways that isolate particu-

lar mechanisms. Take, for example, a clever study on how social pressure affects voter
turnout by Alan Gerber, Don Green, and Christopher Larimer.

Social Pressure and Voting
Gerber, Green, and Larimer mailed postcards to a randomly selected group of reg-

istered voters. The postcards informed the recipients which of their neighbors had and
had not voted in recent elections. (You may not have known this, but in the United
States, whether or not you voted is a matter of public record. Only how you voted is
secret.) They also indicated that another, similar postcard would be sent to neighbor-
hood residents after an upcoming election. The implication was that, if the recipient
didn't vote in the upcoming election, all their neighbors would find out about it. This
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unusual (and perhaps invasive) postcard increased voter turnout dramatically; people
who received the postcard were 8 percentage points more likely to vote than a control
group.

Having seen these experimental results, we might wonder why the postcards had
such large effects—that is, we want to know through what mechanisms the post-
cards cause increased voter turnout. Was the social aspect of the treatment important?
Do people really not want their neighbors to know that they dont vote? Are people
mobilized just because the postcard reminded them about the election? Or are peo-
ple perhaps just trying to impress researchers and so turn out once they know they are
being studied?

To learn about the importance of the social mechanism, the researchers designed
their experiment to include another randomly assigned postcard. This postcard mim-
icked every feature of the previously discussed one, with one exception. Instead of
containing voter turnout information about all of the recipients neighbors, it only con-
tained information about members of the recipients household. Recipients of this type
of postcard would no longer worry that all of their neighbors were going to find out if
they didn t vote. Now it would just be the people they lived with who would learn about
their voting behavior. And those people presumably already had a pretty good guess.
The thought is that this small change takes a lot of the social pressure mechanism out
of the intervention. And, indeed, this postcard also increased voter turnout, but only
by about 5 percentage points relative to a control group.

The clever part of this design is that, by including multiple treatments in the experi-
ment, the authors were able to estimate how much the social aspect of the first postcard
matters. In particular, having voter turnout information made public across a whole
neighborhood, instead of just within a household, appears to account for 3 percentage
points of the overall 8 percentage point effect.

Disentangling Mechanisms
Sometimes, we can do a similar pulling apart of mechanisms even when we dont

get to design the study ourselves. To do so, of course, we must have multiple research
designs that make it possible to separately estimate the effects of different mechanisms.
Let s see an example.

Commodity Price Shocks and Violent Conflict
For decades, scholars have studied economic conditions, violent conflict, and the

causal relationships between the two. It's hard to think of a topic where the stakes are
higher. We would love to improve economic conditions and reduce violent conflict
around the world, but we don t seem to know how to do so.

We already discussed the difficulty ofempirically assessing the effect of the economy
on conflict in chapter 9. When we observe a strong correlation between conflict and
poor economic conditions, it is unclear whether the former causes the latter, the latter
causes the former, some confounding factors cause both, or some combination of all
these possibilities is at work.

To gain more traction on one part of the problem, many scholars have tried to find
research designs that allow us to more credibly estimate the effect of economic condi-
tions on violent conflict. One common strategy involves using commodity price shocks
as part of a difference-in-differences design. The basic idea is as follows.
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Poppy farming is a major industry in parts of Afghanistan. One might think that
Afghan farmers and farm workers making money in the poppy industry would be less
willing to go fight because they'd be giving up relatively good economic opportunities.
But, clearly, we can t just regress the amount ofviolence in different parts ofAfghanistan
against the amount of poppy farming to learn about the relationship between conflict
and economic opportunity. Confounders abound. Poppies are the key raw ingredient to
heroin, so poppy farming goes along with the drug trade, which might affect violence
independently. Moreover, poppies grow in mountainous areas. And the terrain might
also affect the amount of violence.

Another thought is that the willingness of poppy farmers and farm workers to fight
might go down when the poppy business is particularly good and go up when it is bad.
But, again, such an over-time comparison has potential confounders. Perhaps a surge
in demand for poppies happens to also coincide with features of the season, U.S. troop
deployments, or other factors that also affect violence.

But a difference-in-differences strategy might address both concerns. That is, we'd
like to look at differences in violence in poppy-producing places when the poppy
business is good versus bad, and we'd like to compare those differences to the same dif-
ferences in non-poppy-producing places. The idea is that by accounting for any changes
in violence over time and accounting for the possibility that the baseline levels of vio-
lence differ between poppy- and non-poppy-producing places, we can obtain a more
credible estimate of the effect of economic prosperity on violence.

To pull off a strategy like this, of course, we need some measure of when the poppy
business is good versus bad. For that, researchers use changes to the world price of
poppies (or the world price of heroin). The idea is that, for most commodities, most
countries are small players. So the world price of that commodity is unlikely to be
strongly influenced by things that are happening in that country. And therefore, per-
haps we can use changes in the world price to estimate the effect of local economic
prosperity (remember instrumental variables from our discussion of noncompliance
in chapter 11).

The idea is a pretty nice one. Using difference-in-differences designs, we can esti-
mate the effects of economic shocks on violence more credibly than we could just by
comparing violence levels in rich and poor places, or even over time.

Rather than doing this for just one commodity and one country, scholars have done
the painstaking work ofmeasuring how much ofeach ofhundreds ofcommodities each
country produces. From this, they create an index, for each country, of its commodity
bundle. They have also collected the world price of each commodity for each year, so
they can measure how much the value of each country's commodity bundle changes
each year. From this, they can do a giant difference-in-differences analysis to see how
violence changes in response to economic shocks the world over.

Interestingly, when scholars did this, they got a bunch of conflicting results. Some-
times it looked like positive economic shocks reduce violence, sometimes they appeared
to increase violence, and sometimes they had no detectable effect. These contradic-
tory and inconsistent findings were somewhat disconcerting. Better data and research
designs are supposed to provide more, not less, definitive answers.

What is going on? Ernesto Dal Bo and Pedro Dal Bo suggested one possible theo-
retical explanation. They pointed out that there are at least two mechanisms through
which economic conditions might influence conflict, and they pull in opposite direc-
tions. On the one hand, good economic conditions create more and better jobs, and
workers with those good jobs might be less willing to leave them to fight. In other words,
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good economic conditions increase the opportunity costs of fighting. If you're unem-
ployed and hungry, then you might join a revolution, but having a good-paying job
might be enough to deter that inclination. On the other hand, armed groups often fight
over control of economic resources. Good economic conditions mean there is more to
fight over. In other words, good economic conditions increase the benefits ofpredation.
If you live in a desolate place with no economic value, what's the point in fighting over
it? But if there's money to be made from controlling a booming economy, maybe its
worthwhile to fight. Perhaps the fact that a shock to economic conditions can activate
these opposing forces explains the murky results of previous studies.

So where do we go from here? Knowing that there are competing forces is theoreti-
cally illuminating, but its not enough to inform policy. Fortunately, Dal Bo and Dal Bo
thought more about conditions under which one force might dominate the other. Their
idea was that in labor-intensive industries and economies, the opportunity cost mech-
anism should dominate because economic shocks create more need for labor, higher
wages, and better jobs. But in capital-intensive industries and economies, the predation
mechanism should dominate because better economic conditions create more to fight
over without meaningfully increasing wages or employment.

In a 2013 study, Oeindrila Dube and Juan Vargas found a way to empirically test
these ideas using the sort of difference-in-differences strategy we've already described.
They studied armed conflict in Colombia, and they focused most of their attention on
two major industries: coffee and oil. Coffee is relatively labor-intensive, requiring lots
of workers to farm and process. Oil is relatively capital-intensive: once an oil well is
drilled, oil producers do not need lots ofworkers on hand. Importantly, some locales in
Colombia have coffee-intensive economies, while others have oil-intensive economies.
Consistent with theoretical predictions, positive shocks to the world price of coffee
appear to reduce conflict in coffee-intensive locales relative to non-coffee-intensive
locales. This is evidence in favor of the opportunity costs mechanism. By contrast,
positive shocks to the world price of oil appear to increase conflict in oil-intensive
locales relative to non-oil-intensive locales. This is evidence in favor of the predation
mechanism.

This evidence suggests that economic conditions do indeed influence violent conflict
through multiple mechanisms. As such, economic improvements can either mitigate or
exacerbate conflict, depending on which mechanism dominates in a given context. This
means that if we find no average relationship between economic shocks and conflict
world-wide, that doesn't mean economic conditions don't matter for conflict. Rather,
the average relationship might be masking multiple off-setting effects that we can only
understand if we disentangle the mechanisms. So, perhaps economic aid can mitigate
conflict, but only when it corresponds with job opportunities. Economic aid that sim-
ply increases the size of the economic pie that warring factions can fight over, but
does not provide employment opportunities, will likely make matters worse. This is an
important insight that could only have been discovered through the interplay of data,
research design, theory, and clear thinking. The data alone wasn't enough. Nor was a
good research design. It took all of these tools together.

Wrapping Up
We've accomplished a lot in part 3. We fulfilled one of the central goals of the

book—really understanding why correlation need not imply causation. We explored
why causal inference is so difficult and delved into the intellectually exciting world of
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creative research designs that can help us credibly estimate causal effects and uncover
mechanisms. This is really important material, and we hope you feel good about what
you ve learned.

But, on its own, even knowledge of causal effects is not sufficient for making the best
use of quantitative information to inform decisions. In part 4 we turn to some final
topics that will help us think clearly about the right questions, the right evidence to
answer those questions, and the limits of quantification.

Key Terms
• Mediator: A feature of the world that is affected by the treatment and affects

the outcome.

• Causal mediation analysis: Techniques for trying to estimate how much ofthe
effect of a treatment on an outcome is the result of the treatment s effect on a
mediator and the mediator s effect on the outcome.

Exercises

14.1 In the 1990s, the U.S. Department of Housing and Urban Development ran
a large-scale field experiment called Moving to Opportunity. They randomly
selected some households living in high-poverty public housing projects
and offered them housing vouchers (i.e., money that could be used to pay
rent) if they moved to a low-poverty neighborhood. Other households were
given nothing. The goal was to learn whether moving to a low-poverty
neighborhood would be beneficial for economic, mental, and physical
well-being.

Researchers have examined the data and found that households in the
treated condition (receiving a voucher to move to a low-poverty neighbor-
hood) experienced better physical health, mental health, and subjective
well-being than those in the untreated condition (receiving nothing). There
were no significant differences in economic outcomes.

(a) This result is strong evidence that a treatment—receiving a housing
voucher that you can use only by moving to a low-poverty
neighborhood—causes improved well-being. Does this imply that the
treatment works through the mechanism of moving people to a low-
poverty neighborhood? Offer at least one other mechanism that might
explain the result.

(b) How could you modify or add to the experiment in order to better elicit
the effect of moving to a low-poverty neighborhood?

(c) There was actually one additional treatment considered in the exper-
iment. Another group of individuals were randomly assigned to
receive a housing voucher to move anywhere they liked (not just to a
low-poverty neighborhood). In light of this information, what com-
parison^) would you make in order to separate the effect of moving
to a low-poverty neighborhood from the potential effects of moving in
general or receiving the financial benefit of a voucher?

(d) Bonus challenge: Not surprisingly, there was some noncompliance
in this experiment—some people who were assigned to the voucher
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treatment chose not to move. And as you can imagine, the rate of
compliance was different between the two treatments: 63 percent of
households used the voucher when there was no restriction on where

they could move, but only 48 percent used it when it required that they
move to a low-poverty neighborhood. Further complicating matters,
some of the households in the unrestricted condition moved to low-

poverty neighborhoods even though they didn't have to. What would
you do if you wanted to estimate the effect of moving to a low-poverty
neighborhood in light of these noncompliance issues? (There's no easy
answer, but we hope its illuminating to think through all the complica-
tions and appreciate how hard it is to learn about causal mechanisms.)

14.2 There is some compelling evidence that education increases political partici-
pation. Lets think about why this might be.

Some people hypothesize this is due, at least in part, to an income or wealth
mechanism. Perhaps education increases economic prosperity, wealthy people
care more about taxes or economic policy, and therefore they are more likely
to vote. Consider the following kinds of evidence that might be brought to
bear on this hypothesis about mechanisms. How convincing do you find each,
and why?
(a) Suppose, if you run a regression ofvoter turnout on years of schooling,

you get a large coefficient, and if you run another regression ofvoter
turnout on years of schooling and income, the coefficient associated
with schooling is notably smaller.

(b) Because of compulsory schooling requirements, people born toward
the end of the calendar year tend to get more education (because they
are young for their grade and so have to stay in school a year longer
before they can drop out). Exploiting this natural experiment and
using instrumental variables, labor economists have estimated that
schooling significantly increases earnings. Using another natural exper-
iment, researchers have found that winning the lottery increases voter
turnout.

(c) Suppose you find that among people who obtain college degrees in
engineering, those in higher-paid specialities (e.g., aerospace, chemical,
and petroleum) participate in politics more than those in lower-paid
specialities (e.g., civil, environmental, and mechanical).

Readings and References
If you are interested in learning more about causal mediation analysis, you could start
with these readings:

John G. Bullock, Donald P. Green, and Shang E. Ha. 2010. "Yes, But What's the Mech-
anism? (Dont Expect an Easy Answer)." Journal ofPersonality and Social Psychology
98(4):550-58.

Kosuke Imai, Luke Keele, Dustin Tingley, and Teppei Yamamoto. 2011. "Unpacking
the Black Box of Causality: Learning about Causal Mechanisms from Experimental
and Observational Studies." American Political Science Review 105(4):765-89.
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The study on behavioral therapy in Liberia is
Christopher Blattman, Julian C. Jamison, and Margaret Sheridan. 2017. "Reducing
Crime and Violence: Experimental Evidence from Cognitive Behavioral Therapy in
Liberia." American Economic Review 107(4):1165-1206.

The study on discrimination against women in elections is
Sarah F. Anzia and Christopher R. Berry. 2011. "The Jackie (and Jill) Robinson Effect:
Why Do Congresswomen Outperform Congressmen?" American Journal ofPolitical
Science 55(3):478-93.

The experiment on social pressure and turnout is
Alan S. Gerber, Donald P. Green, and Christopher W. Larimer. 2008. "Social Pres-
sure and Voter Turnout: Evidence from a Large-Scale Field Experiment." American
Political Science Review 102(l):33-48.

The studies on economic prosperity and conflict are
Ernesto Dal Bo and Pedro Dal Bo. 2011. "Workers, Warriors, and Criminals: Social
Conflict in General Equilibrium." Journal of the European Economic Association
9(4):646-77.

Oeindrila Dube and Juan F. Vargas. 2013. "Commodity Price Shocks and Civil
Conflict: Evidence from Colombia." Review ofEconomic Studies 80:1384-1421.

There is a ton ofwork on the effects ofMoving to Opportunity. For a classic paper, see
Lawrence F. Katz, Jeffrey R. Kling, and Jeffrey B. Liebman. 2001. "Moving to Oppor-
tunity in Boston: Early Results of a Randomized Mobility Experiment." Quarterly
Journal ofEconomics 116(2):607-54.
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CHAPTER 15

Turn Statistics into Substance

What You'll Learn

• Statistics are often reported or presented in ways that are misleading or unhelp-
ful for decision making.

• Ifyou think clearly about the question at hand, you can often translate a statistic
into a piece of more substantively useful information.

• Quantitative evidence, on its own, cant tell you what to believe. Your beliefs
depend on a combination of the new evidence and your prior beliefs. Bayes'
rule tells us how to update beliefs in response to new information.

• Quantitative evidence, on its own, can t tell you what to do. For that, you must
carefully combine your evidence-based beliefs with your values.

Introduction

Quantitative analysis should provide information that helps us make better deci-
sions. The ideas we've emphasized thus far—how to establish whether a relationship
exists, reversion to the mean, the difference between causation and correlation, using
tools for estimating causal effects, and so on—are important inputs to that process. But
they are not the end point.

Suppose you ve estimated that some intervention has a positive effect on some
outcome. Does that mean you should do the intervention? You can t know from a quan-
titative analysis alone. The decision also depends on your beliefs and values and on
any trade-offs you might have to consider. To get from evidence to action, you need to
translate statistical information into a substantive answer to your question.

People frequently get confused on this point. It's easy to stop thinking clearly once
youve got some precise and authoritative-sounding quantitative finding, reaching
incorrect conclusions even from correct information. In this chapter, we explore how
to avoid such mistakes. The key is to turn statistics into substance, so as to make sure
you are asking and answering the question you really care about.

What's the Right Scale?
There is more than one precise and accurate way to represent a piece of quantitative

information. But they are not all equally helpful. How the information is presented can
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have an important effect on its perceived substantive meaning. For instance, changing
scales can dramatically alter whether a relationship seems large or small, important or
unimportant, a good reason for taking action or not. So it is important, when presented
with such information, to think about whether the way that information is presented
corresponds with the substantive question you are trying to answer, or whether refrain-
ing the relationship some other way might provide a better guide. To see what we mean,
consider a couple examples.

Miles-per-Gallon versus Gallons-per-Mile
Suppose you work for the Environmental Protection Agency regulating automobile

emissions. Your team brings you two proposed regulations to evaluate. One regulation
will result in a 2-miles-per-gallon improvement in the fuel efficiency of small sedans.
The other will result in a 2-miles-per-gallon improvement in the fuel efficiency of large
SUVs. Suppose there are the same number ofthese two kinds ofautomobiles on the road
and, on average, each gets driven 10,000 miles per year. The sedans get 30 miles-per-
gallon (which the regulation would improve to 32 miles-per-gallon), while the SUVs get
10 miles-per-gallon (which the regulation would improve to 12 miles-per-gallon). The
SUV regulation will cost a little bit more to implement. And since the two regulations
each offer a 2-miles-per-gallon improvement for the same number ofvehicles driven the
same number ofmiles per year, your team recommends regulating the sedans. Does this
make sense?

Lets start by remembering the substantive question you want to answer. Your job
is to reduce automobile emissions by reducing gas consumption. Does improving fuel
economy by 2 miles-per-gallon on sedans and SUVs translate into the same reduction
in gas used? Let s turn the statistics into substance to check.

The SUVs get 10 miles-per-gallon, which means that, since the average driver drives
10,000 miles per year, on average SUVs use 1,000 gallons of gas per year (10ff°). If
you implement the regulation that improves fuel efficiency to 12 miles-per-gallon, then
on average SUVs will use about 833 gallons per year (10^00). The 2-miles-per-gallon
improvement saves 167 gallons of gas per SUV per year.

What about for the sedans? The sedans get 30 miles-per-gallon, which means that,
since the average driver drives 10,000 miles per year, on average sedans use about 333
gallons of gas per year (10^00). A regulation that improves fuel efficiency to 32 miles-
per-gallon results in sedans using about 313 gallons ofgas per year (10^00). The 2-miles-
per-gallon improvement saves only about 20 gallons of gas per sedan per year.

It wasn't obvious until we translated the statistics into substance, but now we can see
that your teams recommendation looks wrong. The same 2-miles-per-gallon improve-
ment in fuel economy has a much larger effect on gas consumption when applied to
a gas-guzzling SUV than when applied to an already relatively fuel-efficient sedan. So
you should regulate the SUVs unless doing so is much more expensive.

Figure 15.1 shows how much gas a vehicle that drives 10,000 miles a year uses as
a function of the miles-per-gallon it gets. As expected, gas consumption decreases as
miles-per-gallon increase. Less intuitive, but critical for understanding the results we
just showed, is the fact that the slope of this curve is really steep for low values ofmiles-
per-gallon (less efficient cars) and much less steep for high values of miles-per-gallon
(more efficient cars). You get a lot more bang for your buck improving miles-per-
gallon for inefficient cars than you do for efficient cars. This has interesting implications
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Figure 15.1. Gas consumed by driving 10,000 miles as a function of the miles-per-gallon.

beyond our example. In particular, moving people out of very fuel-inefficient vehicles
into somewhat more fuel-efficient vehicles does a lot more to reduce emissions than
moving people already in relatively fuel-efficient vehicles into very fuel-efficient vehicles
like hybrids.

Returning to our example, there was nothing wrong with the quantitative infor-
mation your team used to form its recommendations. Yet their recommendation was
incorrect. Why? The problem came from the particular metric used to present the quan-
titative information. Miles-per-gallon is the most commonly reported metric for fuel
efficiency in the United States. But it is not a particularly helpful statistic for substantive
decision making.

The substantive question we care about is how much gasoline a car burns given how
far it is driven. But miles-per-gallon tells you how far a car drives given how much
gasoline is burned. That's backward for answering our question. You can do the math,
as we did just now, to turn this statistic into substance. But most people won t. In fact,
most people won t even notice the distinction. And therefore, consumers and regulators
alike may be confused (or tricked) into making bad decisions.

If you wanted to provide more useful information, you would use a more substan-
tively meaningful measure offuel efficiency, something like gallons-per-hundred-miles,
instead of miles-per-gallon. As we just saw, the same 2-miles-per-gallon improvement
results in very different improvements in gallons-per-mile, depending on an auto-
mobiles baseline fuel efficiency. You'd have had no trouble making the right decision
if your team had come to you with two regulations, one of which saved about 8.3
gallons-per-hundred-miles (the SUV regulation) and the other of which saved about
3.1 gallons-per-hundred-miles (the sedan regulation).

Indeed, in a 2008 study, Richard Larrick and Jack Soil show that the way statistics are
reported can be quite consequential for important decisions. They quote an automotive
expert who seems to think it's not worthwhile to try to make marginal improvements
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Figure 15.2. Willingness to pay versus the actual value of improvements in fuel efficiency (in thousands
of dollars).

in the miles-per-gallon of large SUVs when that's, in fact, where engineers and policy
makers would likely get the biggest bang for their buck in terms of mitigating emis-
sions. Furthermore, they show that consumers are often misled by the statistics with
which they are presented in ways that could have significant implications for purchasing
decisions.

Specifically, Larrick and Soil asked college students to consider how much they
would pay for a new car. Respondents were asked to imagine that they drive 10,000
miles per year. They were shown a car that gets 15 miles per gallon and asked to imag-
ine that they value this car at $20,000. They were then shown alternative versions ofthat
car that are reportedly identical to the baseline version in every way except that they get
19, 25, 33, 43, or 55 miles per gallon. How much would respondents be willing to pay
for these more efficient cars?

Figure 15.2 shows the results. The black dots are the average willingness to pay (in
thousands of dollars) reported by the survey respondents. Reported willingness to pay
increases approximately linearly with miles-per-gallon. But it shouldn't! The gray dots
in the figure show approximately how the respondents should have valued these cars
(also in thousands of dollars), assuming that they'll keep the car for ten years and
they have a 3 percent discount rate (i.e., a dollar tomorrow is worth ninety-seven cents
today). As we saw in figure 15.1, a 1-mile-per-gallon increase in fuel efficiency is a lot
more valuable ifyou're starting at a low level ofefficiency than ifyou're starting at a high
level. So the respondents in this study are making a big mistake in how they value these
hypothetical cars.

Larrick and Soil go on to show that they can correct this mistake if they present fuel
efficiency in terms ofgallons-per-hundred-miles rather than miles-per-gallon. In other
words, different ways of conveying the same information can be hugely consequential
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for decision making, so we need to think about the best way to present quantitative
information so that decision makers can best translate their preferences into actions.

Percent versus Percentage Point
Often, in evaluating the substantive importance ofsome effect, we want to know how

big the effect is. There are at least two ways the size of an effect might be reported: the
percent change in the outcome it induces or the percentage point change in the outcome
it induces. The percentage point change is the simple numerical difference between two
percentages. The percent change is the ratio of the percentage point change to the initial
value. So, for instance, moving from 20 percent to 22 percent is a 2 percentage point
increase (22% — 20%) but a 10 percent increase (^)—which can lead to very different
perceptions of the magnitude of an effect. So it is important to check your intuitions by
translating back and forth and thinking clearly about which matters for your question.
Here's an example.

The Wall Street Journal reported on a medical experiment showing that a new drug
reduced the "risk of heart-related death, heart attacks, and other serious cardiac prob-
lems by 44%." A 44 percent reduction sounds big. This, coupled with the headline,
"Cholesterol Drug Cuts Heart Risk in Healthy Patients," makes it sound very important
that people have access to the treatment.

But let's stop to think clearly about the substantive question we are interested in when
evaluating a quantitative result like this. To determine whether it is worthwhile to give
a particular treatment to a large population, we'd like to know how much the treatment
costs and how many people the treatment will save. Knowing that a treatment reduces
heart attacks among otherwise healthy people by 44 percent doesn't actually tell you
how many people it saves. To determine that, you also need to know how frequent heart
attacks are in that population in the first place.

Later in the article we learn that 250 out of the 9,000 people randomly assigned to
the control group, which received a placebo pill, had heart attacks over the course of
the study. This suggests a baseline heart attack risk of about 2.8 percent (^^). A 44
percent decrease in heart attacks means going from about 2.8 percent of people having
a heart attack to about 1.6 percent having a heart attack. Because heart attacks are so rare
in this population, the 44 percent reduction in heart attacks translates into about a one
percentagepoint reduction—not such a huge difference. Indeed, if the drug is expensive,
you might well conclude that the treatment is not worthwhile.

Here, again, we see the value of translating statistics into substance. The article uses
statistics that answer one question—Does the drug cause a large percent decrease in
heart disease?—to which the answer is yes. But the headline makes it seem as though
it is answering a much more important question—Will the drug save a lot of lives?—to
which the answer is probably not. By translating the statistics (the percent reduction)
into substance (number ofheart attacks prevented per 100 people treated), we can easily
spot the difference and answer the questions most relevant for decision making.

Visual Presentations of Data

One of the most common ways to present and consume quantitative information is
through some sort of graph, figure, or visual display. Indeed, we have displayed data
visually throughout this book.
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Figure 15.3. Four different ways to show the difference between 89 and 90 with a bar chart.

Displaying data accurately and informatively is part art and part science. So it is
worth pausing briefly to reflect on some best practices. There are excellent books ded-
icated almost entirely to this topic (see the Readings and References section at the
end of this chapter), so we wont belabor the discussion. But we want to hit on some
essentials.

The most essential of all the essentials is this: no matter how beautiful, data visu-
alizations are not a substitute for clear thinking. Its easy to be fooled by aesthetically
pleasing, but misleading, graphics. So as a consumer ofquantitative figures, you have to
stay focused on thinking clearly about the substance. What are the underlying data and
analyses that led to the figure? Are the underlying assumptions sound? Are there other
statistics or representations of the data that would be more informative? Do the find-
ings being presented answer the question being asked? Is the scale on which the data
is presented appropriate, or was it chosen to hide or exaggerate the substantive mag-
nitude of a relationship? Are there unnecessary, distracting features of the figure that
could mislead you?

Choosing the scale on which to present data is one of the most consequential deci-
sions in creating a data visualization. A seemingly innocuous change of scale can
transform a graph from one that makes a relationship or finding look enormous to one
that makes it look inconsequential, or vice versa.

To see what we mean, have a look at figure 15.3. That figure displays four different
bar graphs, each ofwhich is just a comparison of the number 89 to the number 90. But
by altering the scale—here, by changing the range of the vertical axis—we change how
much we zoom in or zoom out. The result is that we can make 89 and 90 appear to be
hugely different from one another or nearly identical. And we can also make both num-
bers look very large or very small. Therefore, one of the simplest and most important
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ways to make sure you are thinking clearly about how to interpret a figure is to carefully
read the axes and think about what the numbers mean substantively.

Importantly, there isn't a correct scale, separate from the question at hand. You
should decide for yourself what constitutes a substantively meaningful difference in
your particular context. There are some circumstances in which the differences between
89 and 90 is substantively large. For instance, ifyou chaperoned 90 school children on a
field trip, there's a very big difference between 89 and 90 students returning home safely.
Alternatively, it's not likely to be important whether the bus transporting the children
home is 89 or 90 seconds late. The right scale for your graph depends on which kind of
situation you are in.

If a graph is on a scale so big that you can't see substantively meaningful differences,
you should worry that important information is being hidden. If a 1-point difference
is substantively important, then a graph on a scale of 88.9 to 90.1 (upper-right panel of
figure 15.3) appropriately reflects the important distinction between 89 and 90, while a
graph on a scale of 0 to 1,000 (bottom-left panel) obscures that distinction.

And if a graph is on a scale so small that differences you shouldn't care about appear
large, you should worry that findings are being exaggerated. For instance, if a 1-point
difference is substantively negligible, then a graph on a scale of 88.9 to 90.1 inappropri-
ately makes it look like an important difference, while a graph on the scale of 0 to 100
accurately reflects that the two numbers are essentially the same.

Concerns about the scale ofa figure apply far more broadly than just these somewhat
silly bar graphs (you could, after all, just report the numbers 89 and 90). By changing
the scale of the axes, analysts can make correlations look strong or weak, they can make
the slopes ofregression lines appear large or small, and they can even make a linear rela-
tionship appear non-linear or vice versa (for example, by the choice ofwhether to show
income or log-income). As we've discussed, there are plenty of good and bad reasons
to transform a variable or carefully select the scale on which something is presented.
An analyst should always think about how to present their data in the most informative
way, and a consumer should turn what's being presented into the substance they care
about most.

Policy Preferences and the Southern Realignment
Consider an example. In a 2016 book, Christopher Achen and Larry Bartels argue

that voters' policy views have little relationship to their political behavior. That behav-
ior, they claim, is driven by non-policy concerns. As one piece of supporting evidence,
Achen and Bartels argue that policy views don't explain why white voters in the U.S.
South shifted from supporting the Democratic to the Republican party during the so-
called Southern realignment that occurred in the second half of the twentieth century.
Their evidence for this claim is a visual representation ofdata, which we have attempted
to reproduce as closely as possible in figure 15.4.

The figure separately plots the trend in party identification for white Southern-
ers who opposed and did not oppose integration. The horizontal axis is years. The
vertical axis shows the Democratic margin, measured as the percent of people who
identify as Democratic minus the percent ofpeople who identify as Republican. So the
higher a data point is on the vertical axis, the more Democrats there are compared to
Republicans.

The figure clearly shows the Southern realignment. In 1960, Southern whites were
overwhelmingly Democrats. But that changed over time, so that by the end of the
twentieth century they were overwhelmingly Republicans.
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Figure 15.4. Trends in partisanship for white Southerners who opposed and did not oppose integration.

Achen and Bartels argue that the figure also shows that white voters' policy positions
on integration do not affect changing party affiliation. That is, they claim these two
trends are more or less the same. And this, they argue, suggests that voters' positions on
even highly salient policy issues don t influence party affiliation.

What do you notice about figure 15.4? Is it obvious that the trends are more or less
the same? First, we might want to look at the scale of the vertical axis. The measure of
partisanship—the percent of individuals identifying as Democratic minus the percent
of individuals identifying as Republican—in theory could range from —100 to 100. And
that's the scale on which the figure is drawn. However, in practice, many people don't
identify as either Democratic or Republican, so in almost any large population, we're
probably not going to see a Democratic margin anywhere near the theoretical minimum
or maximum. Because the range of the axis is so large, isn't it possible that there is a
substantively meaningful difference that's difficult to see, much like in the bottom-right
panel of figure 15.3?

Also, consider the horizontal axis. The figure only includes data from 1962 through
2000, but the graph is wide enough to include data from 1950 through 2010, leaving a
bunch of empty, wasted space. There is no good reason to leave that space blank. But it
does compress the data.

How would our substantive conclusions change if we removed some of that wasted
space and redrew the same quantitative information on a scale that more accurately
reflects the observed range of the data? We can see this in figure 15.5. We have also
added linear regression lines, which we believe make it easier to visualize the average
trends for the two different groups of voters.

The data visualization in figure 15.5 suggests an importantly different interpreta-
tion from the data visualization in figure 15.4. In particular, figure 15.5 shows that
the trends in partisanship were actually quite different for people who opposed inte-
gration compared to people who did not oppose integration. Those who opposed

Oppose integration
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Figure 15.5. Trends in partisanship for white Southerners who opposed and did not oppose integration
on a more appropriate scale and with regression lines.

integration were more Democratic in the 1960s than those who did not oppose inte-
gration. And they were more Republican by the end of the twentieth century. So their
over-time trend was substantially steeper—people opposed to integration switched
partisan affiliation at a faster rate than people who did not oppose integration. Per-
haps policy views do help explain the shift in party identification during the Southern
realignment.

Lest we fall for the trick in the top-right panel offigure 15.3, we'll want to interpret the
numbers substantively to make sure what looks like a large difference is substantively
meaningful. Most of us probably don t regularly think about percent margins of party
identification, so perhaps there are better ways to convey this information. Let's give it
some thought.

We see that, from 1962 through 2000, white Southerners who opposed integration
went from something like a 48-point margin in favor of the Democratic Party to an
18-point margin in favor of the Republican Party. Those who did not oppose integra-
tion also became more Republican, but the change was more modest—from a 32-point
Democratic margin to a 1-point Republican margin. So the shift for those who opposed
integration was 33 percentage points larger, or twice as big, as the shift for those who
did not oppose integration.

But is that a big or small difference? To provide a benchmark, ifwe look at 2020 data,
33 percentage points is approximately the difference in the Democratic margin between
Massachusetts (a solidly blue state) and Idaho (a solidly red state). So we think its safe
to say that two trends that differ by 33 points on this scale are, in fact, meaningfully
different, and the visualization in figure 15.4 was obscuring substantively important
information.

We've illustrated one set of questions that you would want to ask about figure 15.4
and shown that they matter. But we've only scratched the surface of the questions worth
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asking as you attempt to turn statistics into substance in this case. For example, why
is the right outcome for evaluating political behavior party identification rather than
something more politically consequential, like voting behavior? Why start this analy-
sis in 1962, when the Southern realignment is widely viewed as having started earlier?
Is a single survey question about views on integration the best way to measure policy
preferences in this context?

Some Rules of Thumb for Data Visualization

There is much more to think about in interpreting data visualizations. As we've said,
we aren t going to try to provide a comprehensive overview. But here are some key
principles that we think are important to keep in mind when creating or consuming
graphical depictions of quantitative information.

• Keep it simple. If you don't need multiple colors, don't use colors. If you don't
need fancy graphics, dont include them. Ifa third dimension doesn't add some-
thing crucial, use a two-dimensional plot. Ifyou have complicated legends and
labels, break things up.

• The focus should be on substance. You're trying to convey information in a
transparent and easy- to- absorb manner. Make sure that the design choices you
make are ones that advance the goal of conveying the answer to the question at
hand.

• If you're just showing some simple numbers (like 89 and 90 or a regression
coefficient), perhaps you can do away with the figure altogether and present
the numbers in a table. Save figures for situations where a figure would convey
more information than a table.

• Show the data. One of the great things about a figure is that you can show far
more complicated relationships and far more detail than you might be able to
do with a table. If the point ofyour figure is just to show the intercept and slope
from a regression, you might as well just provide a table. But a figure can add a
lot if you plot both a regression line and the data underlying the regression, so
we can see whether the relationship is or isn't approximately linear. Think about
figure 2.5 or 5.8. We learn a lot from the visualizations, relative to just reporting
the correlation or regression coefficient, precisely because the underlying data
are also displayed.

• When possible, convey uncertainty. Showing your data is a good way to do this.
Instead of just showing means, consider showing distributions. If you're plot-
ting estimates, also consider plotting standard errors or confidence intervals as
we did in figure 12.4.

From Statistics to Beliefs: Bayes' Rule
The data never speaks for itself. Evidence is always interpreted in light of our exist-

ing ideas about how the world works, other related evidence we've seen earlier, and so
on. So, in order to make use of quantitative information, it is important that we think
clearly about how we should integrate that new information into our existing store of
knowledge, so that we can translate statistics into beliefs. A key tool we have for doing
so is called Bayes' rule. To get us thinking about Bayes' rule, how it works, and why we
need it, let's start with an example.
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In 1964 in Los Angeles, an elderly woman named Juanita Brooks was walking down
an alley, pulling a basket ofgroceries with her purse resting on top, when she was pushed
to the ground from behind and her purse was stolen. She didn't get a good look at the
perpetrator. Around the same time, an eyewitness saw a woman run out of that same
alley and enter a yellow car. The witness also didn t get a great look. But he did note that
the woman running was white and had a blond ponytail and that the driver of the car
was a Black man with a beard and mustache. On the basis of this eyewitness testimony,
police later arrested Malcolm and Janet Collins and charged them with the robbery.
Malcolm was a Black man with a beard and mustache. Janet was a white woman with a
blond ponytail. And they drove a yellow car.

As Jonathan Koehler relates in an article, prosecutors brought in a mathematician to
testify regarding the chances that, on the basis ofthis evidence alone, Malcolm and Janet
were guilty of the robbery. The mathematician concluded that there was only about a 1
in 12 million chance that the couple was innocent. Here was the reasoning.

Ifwe just arrested an innocent couple at random, its very unlikely that the husband
would be Black with a beard and mustache, that the wife would be white with a blond
ponytail, and that they would drive a yellow car. Why is this?

The argument starts with some quantitative facts. Ifwe just picked a man at random
from the population, there's a 10 percent chance that he would be Black, because about
10 percent of the U.S. population is Black. Suppose that 10 percent of all men have
beards, so there's also a 10 percent chance that he'd have a beard. Perhaps there's a 20
percent chance that he'd have a mustache. And there's only a 0.5 percent chance that
he'd drive a yellow car, given the number ofyellow cars on the road.

How do we take these numbers and turn them into an overall probability of a ran-
domly selected innocent couple having this confluence of characteristics? Let's think
about an analogy to a deck of cards. What is the probability that a randomly drawn
card is the four of hearts? The probability that a randomly drawn card is a four is 1 in
13. And the probability that a randomly drawn card is a heart is 1 in 4. Since being a
four and being a heart are independent (i.e., knowing that a card is a four doesn't tell
you anything about how likely it is to be a heart and vice versa), the probability of the
two characteristics occurring together is simply the product of the probability of each
occurring individually. So if we draw a random card from a deck, the probability it is
the four of hearts is ^ x | = -^ This makes sense. There are 52 cards in a deck. Only
one of them is the four of hearts.

The prosecutor applied the same logic to the Collins couple. He argued that the
chances that a randomly selected person would be Black, have a mustache and beard,
and drive a yellow car is the product of the probabilities of the individual characteris-
tics: jq x jo x ^ x ik) = Tooooo* ^e continued to add characteristics (being married,
being an interracial couple, the woman having blond hair, and a ponytail, and so on),
eventually arriving at a probability of 1 in 12 million. Indeed, as the prosecutor pointed
out, even this was an under-estimate, since the couple had many other characteristics
that had not been accounted for, so that the probability of innocence was probably
more like 1 in 1 billion! A jury found the Collins couple guilty, and newspapers praised
prosecutors for making such a quantitatively rigorous case.

What do you think: Does this example reflect clear thinking? We hope you said no,
because indeed, there is so much wrong, it is hard to know where to start. But start we
must.

So, first, these characteristics (unlike being a heart and being a four in a deck of
playing cards) are not independent of one another. So you can't just multiply the
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probabilities of each individual characteristic together to get the probability of the
confluence of characteristics. For instance, having a beard is positively correlated with
having a mustache. As such, the probability of having a beard and a mustache is much
higher than the probability of having a beard times the probability of having a mus-
tache. That is, if 1 in 10 men have a beard and 1 in 5 have a mustache, since many
of these are the same men, many more than 1 in 50 men have a beard and a mus-
tache. Indeed, the probability is likely much closer to 1 in 10, since almost everyone
with a beard also has a mustache. So, if we took into account all the relevant correla-
tions, maybe we wouldn't conclude that the probability that a randomly selected couple
fit the eyewitness description was 1 in 12 million. But we would still get a pretty low
probability (maybe 1 in a million). That still seems like good evidence on which to
convict, no?

No. It really isn't. We haven t even talked about the main thing that's gone wrong in
the analysis, which is that it answers the wrong question entirely. If we think clearly
about the right question, we reach a very different conclusion.

The jury has to decide whether or not to convict the Collins couple. They don't want
to do so if the Collins couple is sufficiently likely to be innocent, and they do want to
do so if the Collins couple is sufficiently likely to be guilty. So the right question for
the jury is, How likely is the Collins couple to be innocent, given the evidence? The evi-
dence is that the Collins couple matches the eyewitness description. So the right statistic
to answer the jury's substantive question is the probability that the Collins couple is
innocent given that they match that description. Write this as Pr(innocent | match).
This is called a conditional probability, since it is the probability of one thing con-
ditional on another. It is read in one of two ways. People either say "the probability
they are innocent, conditional on them matching the evidence" or "the probability they
are innocent, given that they match the evidence." Either one is fine. The probability
they are guilty conditional on them matching the evidence is just Pr(guilty | match) =
1 — Pr(innocent | match).

The mathematical analysis we've discussed thus far has not told us this probability
and, so, has not answered the right question. The analysis thus far tells us how likely it is
that a randomly selected couple would match the eyewitness description. That is, it tells
us Pr(match | innocent), which is read "probability a couple would match the evidence
conditional on them being innocent." While this statistic may be useful for answering
the jury's question, it is not itself the answer. The jury wants to know Pr(innocent |
match). The prosecutor has told them Pr(match | innocent). But the jury (and the press)
failed to notice the difference because they weren't thinking clearly.

Let's see why this matters. Suppose we agreed that Pr(match | innocent) is approx-
imately equal to 1 in 1,000,000. We need to figure out Pr(innocent | match). Can we
doit?

Table 15.1 will help. It categorizes couples in Los Angeles County according to two
characteristics: whether they match the eyewitness description or not and whether they
are guilty or not. We know that there is exactly one guilty couple and that couple matches
the eyewitness description. So the guilty column is easy to fill in. The innocent column is
a little trickier. We've agreed that the prosecutor's analysis, along with a bit ofconjecture,
suggests that the probability an innocent couple matches the eyewitness description is
about 1 in 1,000,000. If we approximate that there were roughly 2 million innocent
couples in LA County in 1964, we'll conclude that there were approximately 2 inno-
cent couples who also matched the description. The remaining 1,999,998 couples in LA
County fall into the last cell: innocent and don't match.
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Table 15.1. LA couples by innocence or guilt and whether or
not they match the evidence.

Innocent Guilty

Don't Match 1,999,998 0
Match 2 1

So, how likely is a couple to be innocent, given that they match the description—that
is, what is Pr(innocent | match)? Well, there are three couples that match the descrip-
tion. Exactly one of them is guilty. So the true probability that a couple is innocent,
given that they match the eyewitness description, is not anything like 1 in one million.
It is 2 in 3. That means the probability the couple is guilty given that they match the eye-
witness description is only 1 in 3. On the basis of the eyewitness evidence, the Collins
couple was more likely to be innocent than guilty!

The discrepancy arises not because the mathematician, the prosecutor, and the press
looked at incorrect quantitative information, but because they used the quantitative
information to answer the wrong question. As the mathematician and prosecutor said,
it is very unlikely that a randomly selected innocent couple would match the description
of the criminals. But that doesn't mean it is very unlikely that a couple that matches the
description of the criminals is innocent. Only one innocent couple in a million matches
the description. But two couples out of three who match the description are innocent.
If the jury had been able to think more clearly about the quantitative information, we
suspect the Collins couple would not have been convicted. Few jurors want to send
people to jail on the basis of there being a 1 in 3 chance that they committed a crime.1

Bayes' Rule
The analysis we've just done is an example of a general approach to figuring out what

we should believe, given some evidence. A mathematical tool called Bayes rule (or,
sometimes Bayes' theorem or Bayes' law) gives us the formula for calculating this value.
It is named after Thomas Bayes, an eighteenth-century philosopher and statistician.

Bayes' rule tells us the correct formula for how likely a claim is to be true, given
the available evidence. It goes like this. Suppose we want to know the probability that a
claim C is true, given evidence E. That is, we want to know Pr(C | E). In our example, the
claim was that the Collins couple was innocent and the evidence was that they matched
the eyewitness decision. Bayes' rule says

Pr(£)

Lets go back to the Collins case to unpack this a bit. We want to know the prob-
ability the Collins couple is innocent, conditional on them matching the eyewitness
description. In this case, Bayes' rule says

^un fact: Malcolm Collins appealed the guilty verdict on the grounds that the prosecutor had used a faulty
mathematical argument to convict him. The California Supreme Court reversed the judgement, arguing for the
importance of clear thinking. It wrote, "Mathematics, a veritable sorcerer in our computerized society, while
assisting the trier of fact in the search for truth, must not cast a spell over him."
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Pr(Match | Innocent) Pr(Innocent)
Pr(Innocent Match) = .

Pr(Match)

We can use table 15.1 to find the values to plug in to see how this works.
What is Pr(Match | Innocent)? It is the probability a couple matches, given that they

are innocent. There are 2 million innocent couples. Two of them match. So Pr(Match |
Innocent) = 2^ooo-

What is Pr(Innocent)? It is the overall probability that a random couple is inno-
cent. There are 2,000,001 couples in LA County. Of them, 2,000,000 are innocent. So
Pr(Innocent) = |S0-

Finally, what is Pr(Match)? Again, there are 2,000,001 couples, ofwhich 3 match the
eyewitness description. So Pr(Match) = joofool*

Putting these together we have

Pr(Match | Innocent) Pr(Innocent)
Pr(Innocent I Match) = —

Pr(Match)
2 2,000,000

2,000,000 2,000,001

2,000,001

_2
~3'

Notice, we were able to figure this out earlier without knowing Bayes' rule, just by
looking at the table. So there isn't much need to memorize the formula. But it is impor-
tant to know how to calculate beliefs from evidence and to make sure you are thinking
clearly about what question you want to ask and answer. Because it is really easy to con-
vince yourself that Pr(Match | Innocent) is the same as Pr(Innocent | Match). But, as
we've now seen, they can be really different.

Information, Beliefs, Priors, and Posteriors

Bayes' rule is useful anytime we receive new information and want to update our
beliefs about how likely some claim is to be true. Before we get the new information, we
have what we call a prior belief about the claim—that is, our beliefabout the probability
that the claim is true, without knowing the new evidence. In the formula, this prior
belief is represented by Pr(C)—the probability the claim is true, without reference to
the evidence. After we incorporate the new information, Bayes' rule gives us what we
call a posterior belief: Pr(C | E).

In People v. Collins, the prior belief is the baseline probability that the Collins couple
was innocent, before hearing about the eyewitness testimony. At that point, there was
no reason to suspect them more than any other couple living in LA, so the prior belief
was very close to 1—something like ^ooo'ooi* since aU but one couple were innocent.

We learned that the Collins couple matches the description of the criminals. In fact,
the chances that an innocent couple matches that description was only 1 in 1,000,000,
which might make us think that they are almost certainly guilty. But Bayes' rule tells us
to hold off before jumping to conclusions. On the one hand, the evidence seems pretty
damning. Its extremely unlikely that an innocent couple would match the description.
On the other hand, the prior belief pushes in the other direction. It's extremely unlikely
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that any given couple is guilty. To figure out how likely it is that the Collins couple is
guilty, given both of these facts, we have to ask about the relative likelihood of each
one. If we ignore either our prior belief or the new evidence, we arrive at the wrong
conclusion. Incorporating both, we see that, while the Collins couple is way more likely
to be guilty than a randomly selected couple, there's still a good chance that they are
innocent.

One way of thinking about the problem with the prosecutor s argument is that he
talked only about the new evidence, ignoring the prior. This is a common mistake that
people make when they aren t thinking clearly about quantitative evidence.

Abes Celiac Revisited

Way back in chapter 1, we told you the story of Ethans son, Abe, being incorrectly
diagnosed with celiac disease. In case you dont remember, here are the highlights of
the story.

As a little kid, Abe was small for his age, which is an indicator for celiac. His pedi-
atricians administered two blood tests. One came back positive (evidence that he had
the disease), the other negative (evidence that he did not have the disease). The doctors
concluded that Abe probably had celiac, because the positive test was "over 80 percent
accurate."

The test on which Abe came up negative (lets call this Test 1) for celiac disease had
quite low false negative and false positive rates, about 5 percent each. We can write
this in our new notation. The false negative rate is the probability you get a negative test
result given that you have the disease—that is, Pr(Negative on Test 11 Celiac) = .05. The
false positive rate is the probability you get a positive test result given that you don t have
the disease—that is, Pr(Positive on Test 11 No Celiac) = .05.

The test on which Abe came up positive (lets call this Test 2) for celiac disease had
a false negative rate of about 20 percent—that is, Pr(Negative on Test 2 | Celiac) = .2.
This, we suspect, is where the "80 percent accurate" claim came from. That test has a
false positive rate of 50 percent—that is, Pr(Positive on Test 2 | Celiac) = .5.

Prior to the blood tests, a reasonable guess about the probability of Abe having
celiac disease, given his small stature, was maybe 1 in 100. That is Ethans prior:
Pr(Celiac) = .01.

Lets ignore Test 1 for a second, and just apply Bayes' rule to Test 2. Imagine a group of
10,000 kids, all ofwhom were similarly small in stature. Our prior tells us that, of those
10,000 kids, about 100 (1%) will have celiac. Test 2 s false negative rate tells us that, of
those 100 kids with celiac, about 20 (20%) will nonetheless test negative, while 80 will
test positive. And Test 2 s false positive rate tells us that, of the 9,900 kids without celiac,
about 4,950 (50%) will nonetheless test positive and 4,950 will test negative. Table 15.2
provides a summary.

So what is the probability Abe has celiac, given that he was small in stature and tested
positive on Test 2? Well, a total of 4,950 + 80 = 5,030 kids test positive. Of those, 80
have celiac. So the probability that one of these kids has celiac given a positive result on
Test 2 is 5^0, or approximately 1.6 percent.

Notice, now that we know Bayes' rule, we could have done this without making the
table:

n (r- v in .. t, ^ Pr(Positive on Test 2 | Celiac) Pr(Celiac)Pr(Celiac | Positive on Test 2) = .
Pr(Positive on Test 2)
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Table 15.2. Outcomes of a celiac test on 10,000 kids.

Celiac No Celiac

Negative on Test 2 20 4,950
Positive on Test 2 80 4,950

We know enough to calculate each of these quantities. Pr(Positive on Test 2 | Celiac)
is 1 minus the false negative rate, which is .8. Pr(Celiac) is our prior belief, which
is .01.

Calculating Pr(Positive on Test 2) is a bit more involved. Here's how you do it. There
are two kinds of people who test positive: kids with celiac who get a correct test result
and kids without celiac who get a false positive. One percent of kids have celiac, and of
these 80 percent get a positive test result. Ninety-nine percent ofkids do not have celiac,
and of these 50 percent get a positive test result. So,

Pr(Positive on Test 2) = Pr(Celiac) Pr(Positive on Test 2 | Celiac)

+ Pr(No Celiac) Pr(Positive on Test 2 | No Celiac)

= .01 x.8 + .99x.5

= .503.

Now we can calculate Ethan's posterior beliefs directly:

Pr(Positive on Test 2 | Celiac) Pr(Celiac)
Pr(Celiac | Positive on Test 2) =

Pr(Positive on Test 2)
.8 x .01

.503

^.016

Of course, Abe actually had two tests. What happens if we add in the fact that
Abe tested negative on the more accurate Test 1? If we assume that false positives and
false negatives on these two tests are independent, then we can just multiply to get the
relevant quantities.

Pr(Celiac | Neg on Test 1 & Pos on Test 2)
Pr(Neg on Test 1 & Pos on Test 2 | Celiac) Pr(Celiac)

~ Pr(Neg on Test 1 & Pos on Test 2)

What is the probability that a kid with celiac gets a negative result on Test 1 and
a positive result on Test 2? Well, Test 1 returns a negative for a kid with celiac (i.e., a
false negative) only 5 percent of the time. Test 2 returns a positive for a kid with celiac
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80 percent of the time. So, if the false negatives and false positives are independent
across the two tests, then

Pr(Neg on Test 1 & Pos on Test 2 | Celiac) = .8 x .05
= .04.

The prior belief, Pr(Celiac), remains the same, 1 percent. And, again, there are two
kinds of kids who might get a negative on Test 1 and a positive on Test 2. First, the kid
might have celiac (that's true of 1 percent ofthese kids). That kid would then need to get
a false negative on Test 1 but a correct result on Test 2. As we've just seen, the probability
of this is .8 x .05 = .04. Second, the kid might not have celiac (that's true of99% of these
kids). That kid would then need to get a correct result on Test 1 and a false positive on
Test 2. This happens with probability .99 x .5 = .495. Now we can calculate the overall
probability of these two test scores.

Pr(Neg on Test 1 & Pos on Test 2)

= Pr(Celiac) Pr(Neg on Test 1 & Pos on Test 2 | Celiac)

+ Pr(No Celiac) Pr(Neg on Test 1 & Pos on Test 2 | No Celiac)

= .01 x.04 + .99 x.495

= .49045

Plugging all of this into Bayes' rule, we get

Pr(Celiac | Neg on Test 1 & Pos on Test 2)

Pr(Neg on Test 1 & Pos on Test 2 | Celiac) Pr(Celiac)
~ Pr(Neg on Test 1 & Pos on Test 2)

_ .05 x .01
~ .49045

^.001

The probability that Abe had celiac given the two test results was approximately 1 in
1,000.2

Now that you know Bayes' rule, you can see that the doctors were not thinking very
clearly about what the evidence really meant.

2 We would have gotten the same answer if we had applied Bayes' rule iteratively. We could have started with
the prior belief that Abe had celiac before seeing any evidence, shifted our beliefs according to the evidence from
Test 1, treated this posterior belief as our new prior, and then shifted our beliefs again according to the evidence
from Test 2. And the order in which we do this doesn't matter. We'd end up with the same beliefs in the end if we
started with Test 2 and then went to Test 1. As a bonus exercise, you can try double-checking this yourself to make
sure you understand how to apply Bayes' rule.
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Finding Terrorists in an Airport
In the years following the terrorist attacks of September 11, 2001, the United States

government poured resources into airport security. One of the major new programs
was called Screening of Passengers by Observation Techniques (SPOT).

The idea of SPOT was to use behavioral cues to catch potential terrorists before
they boarded a plane. Behavior Detection Officers watched people in the security line
at airports, looking for indicators that a person was nervous or otherwise suspicious.
Different kinds of suspicious behaviors were assigned different numbers of points. If a
person exhibited a cluster of suspicious behaviors that rose above some point threshold,
that person was targeted for additional questioning, searching, and screening.

By the year 2010, about 5 percent of the Transportation Security Administrations
(TSAs) annual budget, hundreds ofmillions of dollars per year, went to fund the SPOT
program. Lets use Bayes' rule to see why this wasn't a very good use of money.

The TSA needs to be able to answer questions like "Given a set of behaviors and
characteristics, how likely is it that the person in question is a terrorist?" In other words,
the TSA is trying to form a posterior belief about the probability that a traveler is a
terrorist, given some evidence gleaned by observing the travelers behavior. To form
such posterior beliefs correctly on the basis of a program like SPOT, the TSA needs to
know at least three pieces of information:

1. How likely is a random traveler to be a terrorist?
2. How likely is a terrorist to appear suspicious to a Behavior Detection Officer?
3. How likely is a non-terrorist to appear suspicious to a Behavior Detection

Officer?

Unfortunately, according to the General Accountability Office (GAO)—an indepen-
dent, non-partisan agency that works for Congress and is charged with investigating
how the federal government spends taxpayer dollars—the TSA doesnt know the
answers to any of these questions. No existing scientific research confirms, much less
quantifies, the usefulness of behavioral observation for identifying terrorists. What we
do know is that, even according to the TSAs own report intended to show the efficacy of
the SPOT program, it seems that no terrorists have ever been caught by it. Indeed, the
GAO reports that undocumented immigration status was by far the most common rea-
son for detention ofa person identified for additional screening by a Behavior Detection
Officer.

So the government doesnt have the data that we need to calculate posterior beliefs
on the basis of the evidence collected by the SPOT program. But we can see that this
program was never going to work even without hard data. Let s ask how well the pro-
gram would work in something like the best-case scenario. That is, we'll make up some
data, being extremely generous to the SPOT program in all ofour assumptions, and see
whether the program would be a good idea under these assumptions. If the answer is
no even under these generous assumptions, then we can be sure the answer is also no
under more realistic assumptions.

First, according to the GAO, there are approximately 2 billion passenger trips
through U.S. airports each year. For convenience, lets say there are 2 billion plus 100.
Presumably the vast majority of those people are innocent travelers. Very few travelers
are trying to hijack planes or engage in other forms of terrorism. Let s be generous to
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Table 15.3. How many terrorists and non-terrorists appear suspicious.

Not Terrorist Terrorist

Not Suspicious 1,980,000,000 1
Suspicious 20,000,000 99

the government and suppose that each year, 100 would-be terrorists are in U.S. airports
attempting to hijack airplanes. So that's our prior: Pr(Terrorist) = 2 ooo^oo 100 •

Second, we need to know how likely these terrorists are to exhibit the suspicious
behaviors that the Behavior Detection Officers are looking for. Of course, we have no
idea. But all the scientific evidence suggests that these kinds ofbehavioral cues are quite
unreliable. Again, lets be generous and stack the deck in favor of SPOT. Suppose that
99 percent of all terrorists exhibit the behavior that the TSA is looking for—that is,
Pr(Suspicious | Terrorist) = .99. In reality, this number is surely much much lower.

Finally, we need to know how likely innocent travelers are to exhibit the suspicious
behavior. As weVe already said, these behaviors are unreliable indicators, so at least
some innocent people will exhibit them. But we want to be generous to SPOT. So
suppose that only 1 percent of innocent people exhibit suspicious behavior, such that
Pr(Suspicious | Not Terrorist) = .01. Again, in reality, this number is surely much much
higher. For this exercise, we are assuming SPOT is an incredibly accurate behavioral
screening program.

How likely is a person who behaves suspiciously to be a terrorist? Even under these
extremely generous assumptions, the answer is not very likely. Table 15.3 shows you the
data you'd get based on our assumptions.

Ofthe 2,000,000,100 passenger trips, 100 involve terrorists. Ninety-nine ofthem will
exhibit suspicious behavior. The remaining 2 billion trips involve innocent travelers.
Just 1 percent of them will exhibit suspicious behavior. But this 1 percent amounts to
20 million people! A total of20,000,099 people act suspiciously. Of them, 99 are terror-
ists. So the probability that someone is a terrorist given that they acted suspiciously is
2ooooo99- That is> approximately .000005—about 1 in 200,000.

We could have similarly calculated this directly from Bayes' rule.

,_ , _ N Pr(Suspicious | Terrorist) Pr(Terrorist)
Pr(Terrorist | Suspicious) =

Pr(Suspicious)
99 100

_ 100 * 2,000,000,100
~~ 20,000,099

2,000,000,100

99

"20,000,099

Remember the numbers above come from assumptions that are extremely gener-
ous to the government. There is no way that terrorists actually exhibit the behavior the
SPOT program looks for 99 percent of the time. And there is no way that innocent
people actually exhibit the behavior the SPOT program looks for only 1 percent of the
time. So the probability a suspicious person is a terrorist is actually much lower than
1 in 200,000. Indeed, if terrorists exhibit suspicious behavior 75 percent of the time
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and innocent people 10 percent of the time, the probability of being a terrorist given
suspicious behavior becomes about 1 in 37 million:

„ Pr(Suspicious | Terrorist) Pr(Terrorist)
Pr(Terrorist | Suspicious) =

Pr(Suspicious)
75 100

_ 100 * 2,000,000,100
— 200,000,075

2,000,000,100

_ 75
~ 200,000,075

1

37,000,000

Remarkably, even with this number, we are still being too generous. According to
a study by the National Academy of Sciences, screeners looking for just one facial
characteristic (rather than the many things SPOT screeners are looking for) in perfect
conditions get their assessment right only about 60 percent ofthe time. In more realistic
conditions, they get their assessment right only about 30 percent of the time. With this
level of accuracy and the tiny proportion ofpeople who are terrorists, we think it is safe
to say that the over $ 1 billion allocated to the SPOT program was not money well spent.
This is easy to see when we ask the right questions.

Let us end this unpleasant tale with one more distressing tidbit that harkens back to
the key lesson from chapter 4, correlation requires variation. The Government Account-
ability Office is a watchdog organization that is supposed to make sure that government
agencies spend money appropriately. After investigating a program it may also provide
the relevant government agency with advice about how to improve. This is precisely
what the GAO did after evaluating the SPOT program.

One of the areas that the GAO was concerned about was the lack of a scientific basis
for the behavioral characteristics that TSA had its SPOT screeners looking for. Accord-
ing to GAO, the TSA had no idea whether terrorists are actually more likely to exhibit
the behaviors they are looking for or not. (As we just saw, even if they are, this pro-
gram is a waste.) And so, here is what the GAO recommended to the TSA to improve
accuracy:

Studying airport video recordings of the behaviors exhibited by persons wait-
ing in line and moving through airport checkpoints and who were later charged
with or pleaded guilty to terrorism-related offenses could provide insights about
behaviors that may be common among terrorists.

Suppose you watched these videos and found that, for example, all the people who
turned out to be terrorists wore sunglasses and looked agitated waiting in the security
line. Do you want to start arresting everyone who meets that description? We hope not.
As we've known since chapter 4, correlation requires variation. Ifyou want to get better
at the (hopeless) task of identifying characteristics that predict whether or not a person
is a terrorist, at the very least you must compare the characteristics of terrorists and
non-terrorists. You can t just study the terrorists.
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Bayes' Rule and Quantitative Analysis
One particularly interesting application of Bayes' rule is thinking about how confi-

dent we should be about the truth of some scientific hypothesis, in light of the evidence
presented in a scientific study. Of course, we already discussed one approach to this
issue in chapter 6. There, we learned that the p-value tells us how likely a given esti-
mate is to have occurred by chance alone. But if you think about it clearly, that doesn't
answer the right question. In fact, when an analyst finds a lowp-value and concludes
that the finding must be true, they've made the same mistake as the mathematician and
the prosecutor in People v. Collins. They've calculated the probability they would have
found a relationship in their data, even if there is no real relationship in the world—that
is, Pr(result | relationship not real). But what they really want to know is how likely it is
that there is no real relationship, given their result—that is, Pr(relationship not real |
result). The probability there is %. real relationship given the result is just 1 minus
this.

Let's use Bayes' rule to think about this a little more clearly. Suppose we collect some
data, test for a relationship, and obtain a statistically significant result at the .05 level
(i.e., p < .05). What's the probability that the estimated relationship reflects a real rela-
tionship in the world (as opposed to appearing in the data due to noise)? Bayes' rule
tells us.

, , , ,, , N Pr(result | relationship real) Pr(relationship real)
Pr(relationship real | result) =

Pr(result)

And, like before, we can break down Pr(result) into two components. One way we
might have found the result is that the relationship is real and the test correctly iden-
tified it. The probability of this is Pr(relationship real) x Pr(result | relationship real).
The other way we could have found the result is that the relationship is not real
but the test spuriously identifies it as real due to noise. The probability of this is
Pr(relationship not real) x Pr(result | relationship not real). So we can write Bayes' rule
as follows:

Pr(relationship real | result)

Pr(result | relationship real) Pr(relationship real)
Pr(relationship real) Pr(result | relationship real) + Pr(relationship not real) Pr(result | relationship not real)

We know the Pr(result | relationship not real). This is just the significance level used
in our hypothesis test. Ifwe would declare a statistically significant result ifp < .05, then
Pr(result | relationship not real) = .05.

The other numbers are more complicated. The quantity Pr(relationship real) is our
prior beliefthat a genuine relationship exists, before seeing any ofour new evidence. The
quantity Pr(result | relationship real)—that is, the probability you find a result in your
data given that the relationship really exists in the world—is called the statistical power
of the test. The statistical power is the answer to the following question: What is the
probability we would find a statistically significant result in the data given that the rela-
tionship is real? There are ways of estimating the statistical power once we know more
details about the data and test. For instance, one might conduct computer simulations
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to determine how likely it would be to statistically detect an effect of a certain
magnitude.

Now we can rewrite the formula for Bayes' rule one more time in terms of these
substantively interpretable quantities:

Pr(relationship real | result)

Pr(result | relationship real) Pr(relationship real)
Pr(relationship real) Pr(result | relationship real) + Pr(relationship not real) Pr(result | relationship not real)

Power x Prior

Power x Prior + Significance x (1 — Prior)

Let's put this formula to work to see what it implies about our posterior beliefs in light
ofnew, statistically significant, scientific evidence. Suppose we have a hunch about some
causal effect in the world. Its a bit of a long shot. We think there's a 5 percent chance that
this effect exists (our prior belief is .05). So we run a randomized experiment. We want
to be confident in the answer, so we get a big sample size, such that the statistical power
of our test will be .8 (we'll have an 80 percent chance of detecting an effect if one really
exists). And following convention, we use a .05 threshold for statistical significance.
Now, we can ask, conditional on obtaining a statistically significant result, what should
our posterior beliefs be about the probability that the effect is real?

Plugging these numbers into the above equation, we get

.8 x .05
Pr(effect real | result) =

.8 x .05 + .05 x .95

.46.

What happened? Even conditional on getting a result that is statistically significant at
the 95 percent level, there's still only a 46 percent chance that the effect we believe we are
estimating exists at all! The logic is the same as that underlying the conclusion that the
Collins couple was more likely to be innocent than guilty even though the probability a
random couple matched the description was only 1 in a million. The p-value, just like
that 1 in a million, is just one of the numbers we need in order to form our posterior
beliefs. If the power is low or our prior beliefs are low, our posterior beliefs are likely to
be low as well.

This kind of thinking also helps us to better understand the replication crisis in
so many scientific disciplines that we described back in chapters 7 and 8. Remember
the ESP study? What was your prior belief about humans having ESP before you saw
the results from that study? Probably pretty low, right? So your correct posterior belief
that the effect is real, even given the statistically significant evidence, isn't that high.
Figure 15.6 gives you a sense of this. The vertical axis is the posterior probability that
an observed relationship is real. The horizontal axis is the prior probability that it is
real. The curve plots the correct posterior belief as a function ofyour prior belief, given
that a study with statistical power of .8 and a significance threshold of .05 generated
statistically significant evidence of the relationship.

Our prior beliefs are hugely important for our posterior beliefs. Indeed, if you have
really low priors about ESP, like we do, then it might not even make sense to study ESP,
because the results of the study will have virtually no effect on your beliefs.
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Figure 15.6. Posterior belief that an effect is real given statistically significant evidence, as a function of
prior belief.

Figure 15.7 shows how the change in beliefs in response to new evidence relates to
the prior. That is, it plots your posterior belief that a real relationship exists minus your
prior belief that a real relationship exists, for different values of the prior belief, given
that you saw statistically significant evidence in favor ofthe relationship. As you can see,
if your prior belief is already very close to 0 or 1, it is very hard to move your beliefs.
The effect ofnew evidence is largest for moderately surprising results (i.e., results where
your prior beliefwas around .2).

Figure 15.7 also illustrates that two people can (and should) react quite differently to
the same piece of information ifthey have different prior beliefs. Some people might see
a piece of evidence about ESP, the consequences of global warming, or Russian inter-
ference in American elections and shift their beliefs dramatically, while others might
see the same piece of evidence and barely shift their beliefs at all. When we experience
this in our day-to-day lives, we often conclude that people who reacted differently than
we did are unreasonable or irrational. But Bayes' rule tells us that it is perfectly under-
standable that different people react differently to the same information if, at the outset,
they had different prior beliefs.

Some of this discussion might make you uncomfortable. As data analysts, aren't we
supposed to let the data speak without imposing our own prejudices? And where do
these priors come from, ifnot from data? These are tough questions. But there's no way
around them. If you want to say something about the probability there is a genuine
relationship in the world, given some piece of evidence, you need to have prior beliefs
about the likelihood of that relationship. You cant just ignore your priors. Because, as
weVe seen, Pr(result | relationship not real) and Pr(relationship not real | result) can be
very different.

Here's another wrinkle. Most of the time, we're not really interested in the probabil-
ity that some phenomenon exists or doesn't exist (though we probably are in the ESP
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Figure 15.7. How much posterior beliefs change in response to new evidence, as a function of the prior
belief.

example). Typically we want to know how substantively important or large an effect or
relationship is, not just that it exists. That is, instead of just wanting to know if there
is a real effect of, say, campaign strategy on vote share, we want to know the size of
the effect of campaign strategy on vote share. How many supporters can a campaign
turn out by launching a door-to-door canvassing campaign? Will turnout increase by
0.1, 1, or 10 percentage points? We can also incorporate Bayesian reasoning in such
situations, but it's complicated. When thinking about the magnitude of a relationship,
your prior belief is not just a single number, as it was when thinking about the prob-
ability that a relationship exists. Instead, it is a belief about how likely each possible
relationship size is. And when you update your beliefs, you have to update your beliefs
about each of these probabilities. Some analysts do this formally, specifying the whole
prior distribution of beliefs about all the possible magnitudes and then doing compli-
cated computations to estimate their posteriors. (This is called Bayesian statistics.) An
alternative approach is to continue using conventional statistics like those described in
chapter 6 (calledfrequentist statistics), while still trying to be careful when interpreting
the results.

Expected Costs and Benefits
Your beliefs about effects are only one input to a decision. Even once you have made

sure that things are on the right scale, you are answering the right question, and you have
formed correct posterior beliefs based on the evidence and your prior beliefs, quan-
titative information still doesn't speak for itself. To use information and evidence to
improve decision making, you have to combine your evidence-based beliefs with your
values and goals to figure out how to act.

There is a sense in which this is obvious. Suppose a really well-designed series of
studies convinces you that a certain kind ofschool intervention increases the likelihood
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that students will attend college by 30 percentage points. That's a big effect. But that
alone doesn't tell you that the intervention is a good idea. To answer that question, at
the very least, you have to know the value of college and how much the intervention
costs.

It is easy, in the midst of forming beliefs based on sometimes complicated data anal-
yses, to lose track of thinking about costs, benefits, values, and goals. A giant effect may
seem compelling, just on its own. But it is important not to fall into this trap—because
what may seem like obvious implications of a piece of evidence may turn out not to be
so obvious. Let s see an example.

Screening Frequently or Accurately
As we write this section, a coronavirus pandemic is sweeping across the world. One

of the central challenges in confronting the pandemic concerns testing—specifically,
identifying infected people quickly enough that they can be isolated before they spread
it to too many others.

As weVe emphasized several times in this book, in thinking about the efficacy of a
test for diagnosing a disease, both the false positive and the false negative rates matter.
The lower each is, the more accurate the diagnosis. Not surprisingly, then, regulatory
agencies like the Food and Drug Administration (FDA) demand tests that have low
false positive and false negative rates, not allowing them on the market if they are too
inaccurate on either front.

Much of the time, this is quite sensible. We don't want sick people concluding they
are healthy (false negatives) or healthy people concluding they are sick (false positives).
And we don t want to undermine testing by having people conclude that they can t trust
tests in general.

In the early months of the coronavirus, medical scientists tried a variety of
approaches to testing. Several of these had low false positive rates. But the nasal-swab-
based polymerase chain reaction (PCR) tests had the additional virtue of low false
negative rates. This is because they were able to detect the virus at quite low levels.
Because they satisfied the FDA's requirements for low false positive and false negative
rates, PCR tests were quickly approved and became the standard testing regimen.

A competing technology, tests that involved putting saliva on a paper strip, had
a harder time getting approval. The reason was their higher false negative rate. The
paper-strip tests could only detect the virus at higher levels of concentration. So they
were more likely to miss someone who was infected, especially in the early days of an
infection, when a persons viral load was still relatively low.

For many diseases, the FDAs position might make a lot of sense. If we are testing
for celiac disease or cancer, it makes sense to only approve the most accurate tests. But
the coronavirus case is, arguably, different in a bunch of ways that are worth thinking
through.

In comparing the merits of two diagnostic tests, the false positive and false negative
rates are important. But they aren't the only relevant criteria. One should also consider
the relative costs ofthe two tests. And, especially in the case ofa highly infectious disease
like the coronavirus, one should also consider the speed ofthe test. It is one thing to wait
a week or two for the results of a celiac test. It is another thing to wait a week or two for
the results of a coronavirus test, during which time the person in question could spread
the disease to many other people.
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As it turns out, while the paper-strip tests have higher false negative rates than PCR
tests, they are much cheaper, can be administered at home, and can deliver results in
under an hour, as compared to the five to ten days people were waiting for PCR results.
If we combine these additional pieces of information with the difference in the false
negative rates, we might reach a quite different conclusion about whether the FDA did
the right thing by delaying approval of the paper-strip tests.

To start to get a sense of the issues, think just about the difference in price. By some
estimates, paper-strip tests cost $l-$5, while PCR tests cost $50-$100. So comparing
one PCR test to one paper-strip test hardly seems fair. We could do at least ten paper-
strip tests for every PCR test.

The main way you get a false negative on a test like this is ifyour viral load is too low
to be detected by the test. The PCR test has a lower false negative rate because it can
detect the virus in much lower concentration. But the coronavirus grows very quickly
in a person. So scientists suspect it only takes a day or so to go from having the sort of
viral load that can be detected by a PCR test to having the sort ofviral load that can be
detected by a paper-strip test.

If this is right, one way of thinking about the difference between the two tests is as
follows. Suppose you can afford N paper-strip tests for each PCR test. So, to keep costs
equal, let s imagine we do a paper-strip test every day or a PCR test once every N days.
For the sake of argument, lets imagine N= 10 and lets ignore delays in getting test
results back. You have to choose between taking the PCR test on day 1, 11, 21, and so
on and taking a paper-strip test every day. Focus on days 1 through 10. Under the PCR
regimen, ifyou have a low viral load on day 1, you detect the virus with the PCR test on
that day, but you don t find out you are infected with the paper-strip test for another day
or two. Ifyour viral load is low on day 2, you don t detect you are sick with the PCR test
until day 11, but you detect you are sick with the paper-strip test on day 3. The same is
true for days 3 through 9. If your viral load is low on day 10, you find out you are sick
with either test on day 11. So, all told, the probability you find out you are sick faster
with PCR testing is 1 out of 10. The probability you find out you are sick faster with
paper-strip testing is 8 out of 10. And the probability you find out you are sick at the
same time under either regimen is 1 out of 10.

Of course, there may be other reasons that people get false negatives besides low
viral loads. So here's another way to think about the comparison. Suppose, again just
for the sake of argument, that both tests had a false positive rate of zero. So we are only
worried about the false negative rate. Letp be the false negative rate of the PCR test and
q be the false negative rate of the paper-strip test. The probability the PCR misses an
infected person is p. How likely are ten paper-strip tests to miss this case? That depends
on how correlated false negatives are across tests ofthe same person. Ifthey are perfectly
correlated (which surely isnt true, since a persons viral load is increasing over time),
then if you get a false negative once, you will always get a false negative. In this case,
the probability that ten paper-strip tests miss the case is the same as the probability
that one paper-strip test misses the case, q. If, by contrast, false negatives are completely
uncorrelated across cases (which also surely isnt true, since some people have lower
viral loads than others and so their cases are harder to detect), then the probability that
ten paper-strip tests miss an infected person is q10. So, for instance, if the PCR test had a
false negative rate of one-tenth of 1 percent and the paper-strip test had a false negative
rate of 20 percent, ten paper-strip tests would be way more likely to catch an infected
person than one PCR test (.001 > .210 & .0000001). The truth, ofcourse, lies somewhere
in between.
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There are still more factors to consider in evaluating these two approaches to test-
ing. First, as weVe already indicated, false negatives are more likely early in a persons
infection, when the viral load is low. But this is also when people are less infectious. So,
as it becomes more important to correctly diagnose people, the difference between the
PCR and paper-strip test goes down.

Second, a tests speed is an incredibly important part of the cost-benefit calcula-
tion. The main benefit of testing is to keep people from infecting others once they
are infected. The coronavirus grows rapidly in an infected person. So there are huge
advantages to administering the test at home and getting results in less than an hour.

For all these reasons, studies that simulate disease spread under a variety of testing
regimens find that differences in the frequency and rapidity oftesting can be much more
important than differences in false negative rates. As such, the FDA's sensible-sounding
rule for approving diagnostic tests might not have been so sensible in this case.

One thing you might worry about is that, unlike the PCR tests, perhaps the paper-
swab tests did not have false positive rates close to zero. If there are lots offalse positives,
then daily testing might lead to lots of costly and unnecessary self-quarantining. False
positive rates are hard to study, but at least some evidence suggests that they were low,
even for the paper-swab tests. But even if false positive rates were non-negligible, the
combination of the two technologies suggests a reasonable solution. Paper-swab tests
need not be treated as the final answer in order to be highly useful. If everyone did a
paper-swab test every day, some people would get false positives. They could be asked
to self-quarantine, while being immediately administered a more definitive PCR test.
With the load on labs lightened by reduced PCR testing, turnaround times might even
speed up. And, as a result, false positives could be corrected relatively quickly, with a
minimum of inconvenience.

The point of this discussion is not to provide a definitive answer to this difficult pol-
icy problem, on which we are not experts. Rather, it is to illustrate the fact that we have
to consider lots of different costs and benefits when we make decisions, and every per-
son or society has to use their personal values to decide how to weigh those different
costs and benefits. Its easy to fixate on one particular quantitative statistic like the false
negative rate and make decisions accordingly, but that is typically a mistake. We'll return
to these themes in the final two chapters.

Wrapping Up
Turning statistics into substance helps us think clearly about what exactly the evi-

dence tells us about the questions we are trying to answer. Keeping those questions
forefront in our minds is a key element of thinking clearly about how to use quanti-
tative information. Indeed, we need to do so not only when interpreting the results of
an analysis but when choosing how to measure, selecting the samples we study, and
deciding which settings our results apply to. Those issues are the topic of chapter 16.

Key Words
• Percentage point change: The simple numerical difference between two per-

centages.
• Percent change: A way of measuring the degree of change. It is the differ-

ence between the initial value and the new value divided by the original value
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(multiplied by 100). Unlike percentage point change, percent change is highly
sensitive to the original value.

• Conditional probability: The probability of an event conditional on some
other information. We write the probability of C conditional on E as Pr(C | E).

• Prior belief: Your belief about some thing before learning new evidence.
• Posterior belief: Your belief about some thing after incorporating new evi-

dence.
• Bayes' rule: A formula for calculating your posterior belief conditional on

new evidence and your prior belief. In particular: Pr(C \E)= IJe) •
Sometimes called Bayes' theorem or Bayes' law.

• Statistical power: The probability of finding a statistically significant result in
the data given that the relationship really exists in the world.

Exercises

15.1 A newspaper reports, "Economic growth was 20 percent higher in Country A
than in Country B last year."

The typical way that economists measure economic growth is the percent
change in GDP from one year to the next. So we'd say economic growth was
3 percent in a particular country and year if the GDP was 3 percent higher at
the end of the year than at the beginning.

(a) Suppose GDP growth in Country B was 10 percent. What was GDP
growth in Country A?

(b) Suppose GDP growth in Country B was 0.1 percent. What was GDP
growth in Country A?

(c) What s an alternative way to write the headline so that you don t mis-
leadingly mask the difference between the scenarios described by (a)
and (b)?

15.2 Now consider two other countries C and D. Suppose that growth in Country C
is 1 percent while growth in Country D is 0.1 percent.

(a) What is the percent difference in growth? What is the percentage point
difference?

(b) Write two headlines, each including a true statistical fact about the two
countries. One should make the difference in their economic growth
sound like a really big deal. The other should not.

(c) Now suppose that upon a statistical review, growth in Country D
turns out to be just 0.001 instead of 0.1 percent. What now is the per-
cent difference in growth between the two countries? What is the
percentage point difference? Which of these two statistics better con-
veys the substantive significance of the shift from 0.1 percent to 0.001
percent? Why?

15.3 During the coronavirus pandemic, governments and private organizations
around the world rushed to create diagnostic tests. Those tests varied in their
accuracy. Lets think about one of those tests, which was reported to have a 1
percent false positive rate and a 10 percent false negative rate.
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We don t know the underlying rate of coronavirus in the asymptomatic
population. Suppose the probability an asymptomatic person has coronavirus
is some number q—that is, the prior belief any given person is sick is
Pr(sick) = q.
(a) Using the information above about the false negative rate, what is the

probability a person gets a positive result given that they really do have
coronavirus (written, Pr(+ | sick))? (Hint: You don't need Bayes' rule to
answer this question.)

(b) There are two ways to get a positive test result. A person with
coronavirus can get a correct test result. And a person who does
not have coronavirus can get a false positive. Calculate the overall
probability that an asymptomatic person gets a positive test:

Pr(+) = Pr(sick) • Pr(+ | sick) + Pr(not sick) • Pr(+ | not sick)

(Your answer will have q in it because it will depend on the prior belief
that an asymptomatic person is sick.)

(c) Now use Bayes' rule to calculate Pr(sick | +)—the probability that an
asymptomatic person tests positive. (Your answer will, again, have
q in it.)

(d) We don t actually know q. Let's think about different scenarios.
i. Calculate Pr(sick | +) if q = .005 (i.e., if half a percent of the

asymptomatic population has coronavirus).
ii. Calculate Pr(sick | +) if q = .01 (i.e., if 1 percent of the asymp-

tomatic population has coronavirus).
iii. Calculate Pr(sick | +) if q = .05 (i.e., if 5 percent of the asymp-

tomatic population has coronavirus).
iv. Draw a figure with q on the horizontal axes (going from 0 to 1)

that graphs Pr(sick | +).

15.4 Discrimination against certain groups in the job market is a major societal and
policy concern. Many studies seek to bring quantitative evidence to bear on
the extent of such discrimination.

Let's think through a very simple example. Imagine a society with
two equally sized and equally qualified groups: the privileged and the
unprivileged.

Using the conditional probability notation we developed earlier we will
express the probability that a person gets a job given their group member-
ship as Pr(hired | group). Similarly, we will express the probability that a
person is a member of a particular group given that the person got a job as
Pr(group | hired).
(a) Suppose you want to know whether, if they both apply for the same

job, a member of the privileged group is more likely to be hired than
a member of the unprivileged group. So you want to know whether,
among those who apply for the job, the following is true:

Pr(hired | privileged & applied) > Pr(hired | unprivileged & applied)
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i. Use Bayes' rule to rewrite Pr(hired | privileged & applied) as a
function of three terms, Pr(privileged | hired & applied), Pr(hired |
applied), and Pr(privileged | applied).

ii. Use Bayes' rule to rewrite Pr(hired | unprivileged & applied)
as a function of three terms, Pr(unprivileged |
hired & applied), Pr(hired | applied), and Pr(unprivileged |
applied).

(b) Suppose a study shows that people in a given job are equally likely to
be privileged and unprivileged. Express that using our notation. Which
two terms from your answer to (a) does that mean you know?

(c) Is the information in (b) sufficient to determine whether, if they both
apply for the same job, a member of the privileged group is more likely
to be hired than a member of the unprivileged group? Using your
answer to part (a), what additional piece of information would you
need to know?

(d) Suppose you learned that the same number of members of the two
groups applied for the job. Now would you know the answer?
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CHAPTER 16

Measure Your Mission

What You'll Learn

• It is important that you measure outcomes and treatments that correspond to
your mission.

• Ifyou measure the outcome in an incomplete way, apparent improvements may
be misleading.

• Data always comes from a particular context. When applying the lessons drawn
from data to a new context, it is important to think clearly about whether the
contexts are sufficiently similar that the lessons will continue to hold.

• Sometimes, there is a relationship in the world that would help you achieve your
goal. But once you actually use that relationship to try to do so, the relationship
itself disappears, so it is no longer helpful.

Introduction

When you use evidence to inform your decisions, you have some goal in mind. That
goal is your mission. Why is it important to measure it?

Suppose you have evidence about a causal relationship; some action affects some
outcome in a predictable way. If changing that outcome means you have achieved your
goal—that is, if in measuring the outcome you measured your mission—then knowl-
edge of that causal relationship is straightforwardly useful. But what if changing the
outcome you measured doesn t necessarily mean you have achieved your goal, or what
if it only corresponds to one part ofyour goal? Then, which action the evidence suggests
will further your mission might not be so clear.

The same goes for correlations. Suppose your mission involves trying to predict
some outcome, but you ve measured a related, though different, outcome. Are you sure
that the correlates of the outcome you measured will help you predict the outcome of
interest?

In this chapter, we will explore several ways in which things can go wrong when we
have good evidence about what might turn out to be the wrong thing. Each of these
examples will illustrate the reasons it is important to measure your mission, as best as
possible, when trying to use evidence to make better decisions.
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Measuring the Wrong Outcome or Treatment
The most straightforward way that you might fail to measure your mission is by

measuring an outcome or treatment that doesn t quite correspond to what you are really
interested in. Here we consider three ways in which this commonly happens.

Partial Measures

Often our mission is to change some outcome—say, educational achievement,
national security, or health—that is hard to measure in its entirety. For instance, we
might not have an encompassing measure of overall educational achievement, but per-
haps we can measure whether standardized test scores improve. Such partial measures
can be helpful. But we have to be careful about interpretation because improving test
scores is not our mission. Our mission is improving education.

In many settings, there are good reasons to think that improvements on one dimen-
sion might tend to coincide with losses on other dimensions. That is, as we get better
at one part of a problem, we might get worse at other parts. A simple reason for this
is resource constraints. Suppose your overall mission is to make a local park more
beautiful. You have a budget to support your mission. If you spend more resources
on trash pickup, you have less money to spend on landscaping. So improving on
one dimension means getting worse on another. And if you just have a partial mea-
sure of your mission (say, the amount of trash on the ground), then as you spend
more money on trash pickup, you might be tempted to conclude you are doing a
better job achieving your mission. But, because things are getting worse on the land-
scaping dimension as a result of devoting more resources to trash pickup, this is mis-
leading.

There are additional reasons, besides limited resources, for a negative correlation
across dimensions of a problem. Perhaps the most interesting is strategic adaptation—
efforts to improve outcomes on some dimension lead people to adjust their behavior
to get around those efforts. This too can make partial measurements problematic. Lets
see how this plays out in an example.

Metal detectors in airports
Starting in the mid-1960s, hijacking became a serious problem in U.S. civil aviation.
Over eighty airplanes were taken by hijackers in 1969 alone. The hijackers included
Americans, Croatians, Cubans, Japanese, North Koreans, Palestinians, and many oth-
ers. Their motivations ranged from simple ransom to nationalist, leftist, and other
global political causes. In the early 1970s, in response to this growing threat to air safety,
the United States increased airport security. Most importantly, metal detectors were
installed in every major U.S. airport in early 1973.

Imagine you were a government official tasked with evaluating the efficacy of these
heightened security measures. A natural question you might ask is whether they
resulted in a significant decrease in hijackings. Figure 16.1, showing hijackings per
quarter from 1968 to 1978, suggests the answer is yes. Prior to 1973 (represented by
the dashed, vertical line), there was an average of almost twenty hijackings per quarter.
But after 1973, that number drops to fewer than ten per quarter.
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Figure 16.1. Quarterly hijackings 1968-1978 along with separate regression lines for quarters before and
after first-quarter 1973. The vertical dashed line indicates when metal detectors were installed in U.S.
airports.

Lets think about whether we've measured our mission. One possibility is that the
mission is to reduce hijackings. In that case, hijackings are the right outcome to study
and this looks like a success. But another possibility is that the mission is to increase
security from all terrorist hostage takings, not just hijackings. In that case, hijack-
ings are only a partial measure of the mission because there are lots of other kinds of
terrorism.

Moreover, this is just the kind of setting where we might worry that improvements
on one dimension of a problem (here, hijackings) tend to coincide with exacerbation
of the other dimensions of the problem (here, other kinds of terrorist attacks). The rea-
son is strategic adaptation. As airport security improves, we might worry that terrorists
substitute hijacking for other kinds of hostage takings. If this is the case, the apparent
reduction in hijackings might be misleading as a measure of how successful increased
airport security was in terms of the overall counterterrorism mission.

And, indeed, this appears to be the case. Figure 16.2 shows a finding inspired by
the work of Walter Enders and Todd Sandler—after metal detectors were installed in
U.S. airports, other kinds of terrorist hostage takings became more frequent. And so, if
we have a more encompassing, rather than partial, measure of our mission, we reach
somewhat different conclusions.

Of course, this doesn't mean that the metal detector policy was a failure. The sub-
stitution from hijackings to other hostage takings does not appear to be one-for-one.
Moreover, hijackings might be worse, on average, than other kinds of hostage takings.
So this might still be a counterterrorism win. But it is not nearly so dramatic a win as
one might have thought looking only at the impact on hijackings rather than a more
complete measure of the mission.
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Figure 16.2. Quarterly hostage takings not on airplanes, 1968-1978, along with separate regression lines
for quarters before and after first-quarter 1973. The vertical dashed line indicates when metal detectors
were installed in U.S. airports.

Intermediate Outcomes

Often, measuring the outcome associated with your mission is difficult, takes a long
time, or just doesn't yield enough data. A common solution is to measure intermediate
outcomes, steps along the path of the mission, that we hope will be indicative of the
longer-term objective.

Suppose you're running a political campaign and you're trying to maximize the prob-
ability that your candidate wins. You want to test a few different ads to see which ones
are the most effective. You could run the ads in different media markets and see where

you do the best on election day. But that won t do much good. You need to know which
ad to run before the election happens. So, instead, you have to measure some outcome
that will give you some sense ofwhich ad is best while the campaign is ongoing.

One natural option to help you decide on your strategy is opinion polls. Instead of
running ads randomly and seeing what happens to vote totals, you could run ads ran-
domly, conduct opinion polls, and see which ad appears to help you in the polls. There's
not necessarily anything wrong with doing this. It's a good idea. But you have to keep in
mind that you don't care about polls per se. You care about votes. So to the extent that
changing poll numbers is indicative of a step along the path to changing votes, learning
about this intermediate outcome is informative about your mission. But, for example,
it's possible that your ad changes poll numbers by changing which people are willing to
respond to the poll or whether people tell the truth to pollsters, without changing peo-
ple's actual vote choices. If that is the case, impacting the intermediate outcome might
not matter at all for the final outcome you care about. So, whenever you use an interme-
diate outcome instead of a measure of your ultimate mission, you want to think about
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how sure you are that the intermediate outcome really is a step on the path to your actual
goals.

Let's think about an example from medicine, where the impracticality of studying
the actual outcome of interest is often particularly acute.

Blood pressure and heart attacks
Suppose the goal of a new drug is to reduce heart attacks. Unfortunately for research
purposes (but fortunately for other reasons) heart attacks are rare. So relatively few
people in any given sample will have heart attacks during the course of a drug trial.
As such, it is very hard to learn directly about whether a drug reduces heart attacks
even in a well-designed experiment that randomizes who gets the drug and who
doesn't.

So what do medical researchers do? One alternative to waiting twenty years to see
whether patients who were assigned the drug are less likely to have heart attacks is to
study an intermediate or surrogate outcome, like blood pressure. Since blood pressure
predicts heart attacks, the thinking goes, if a drug reduces blood pressure, it is likely to
reduce heart attacks.

But we have to be careful. We learned in part 2 that correlation need not imply
causation. Playing basketball is correlated with height but experimentally increasing
basketball playing does not increase height. Similarly, just because blood pressure and
heart attacks are correlated doesn't mean that a drug that reduces blood pressure will
reduce heart attacks. For that, you'd have to have compelling evidence that blood
pressure has a causal effect on heart attacks.

Now, there are good reasons to believe that blood pressure really does have a causal
effect on heart attacks. But for many other intermediate outcomes used in medical
studies, the causal linkage may be less clear.

In a 1994 review ofthe evidence, Thomas Fleming illustrates the point in a discussion
of research on cancer. Often, when studying cancer treatments, scientists cannot wait
long enough to look at the effect of a treatment on, say, mortality. So, instead, they
study the effect on an intermediate outcome. One popular such intermediate outcome
is tumor size.

For instance, Fleming describes a medical trial for a drug intended to treat prostate
cancer. The researchers determined that if they examined mortality as their outcome,
they would need a sample ofbetween 40,000 and 100,000 subjects to detect a reasonably
sized effect because death from prostate cancer is rare and slow. Since they could only
recruit 18,000 men for their trial, they instead decided to use tumor size, as measured
by a prostate biopsy, to assess the effectiveness of the drug.

One problem, as Fleming discusses, is that prostate tumor size is only a very weak
proxy for the actual mission, which is presumably not dying from cancer. Thirty percent
ofmen over the age offifty test positive for prostate tumors. But only 3 percent actuallydie
from prostate cancer. Many prostate tumors growvery slowly. So other things, like heart
attacks, get people first. The experiment showed that the drug being tested significantly
reduced tumor size. But it is entirely possible that much of the reduction in tumor size
was in the kinds of tumors that were never going to harm the subjects in the first place.
So we really don't know whether progress on this intermediate outcome contributed
much, if anything, to progress on the mission of avoiding death by prostate cancer.

Of course, we don't mean to suggest that studying intermediate outcomes is a bad
idea. Indeed, it is often the best that can be done, given other constraints. But in
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interpreting the finding of a relationship between some action and an intermediate
outcome, it is important that we think clearly about what we know about the relation-
ship between the intermediate outcome and our actual mission.

Ill-Defined Missions

Often, your mission may be slightly tricky to pin down. In particular, there is some-
times more than one reasonable way to measure what may seem to be the same mission.
But which choice you make can matter a lot. So it is important to think hard about what
outcomes and treatments really define your mission.

Suppose you're a college student considering your educational and career choices
with the goal of maximizing your future earnings. The first thing you might think to
do is study the Forbes list of the richest people in the world and try to follow in their
footsteps. One thing you might infer is that the way to maximize your earnings is to
drop out of college and start a tech company. This was the strategy taken by Bill Gates,
Mark Zuckerberg, and Larry Ellison, three of the eight richest people in the world at the
time of this writing. But you wont make that mistake because you learned in chapter 4
that correlation requires variation. To know ifdropping out ofcollege and starting a tech
company is correlated with success, you can t just study the most successful people.

Suppose you pushed further and tried to get a sense of how many people in the
underlying population dropped out of college and started their own tech company.
You'd surely find that less than .01 percent of all people dropped out of college and
started their own tech company, and yet 37.5 percent of the worlds eight richest people
did so. So there appears to be a strong correlation. People who drop out of college and
start their own tech company are much more likely to end up one of the world's eight
richest people than people who stay in college or never start a tech company.

Having identified a correlation, there are still some reasons you might not want to
make a rash decision and drop out of college today. First, we might have just inad-
vertently engaged in something akin to p-hacking. We studied a small population of
extremely wealthy individuals, we looked for commonalities, and we eventually found
something that a few of them have in common. But that might just be a coincidence.
Maybe the correlation we observe today won t hold in the future, in which case dropping
out and starting a tech company might be a bad idea.

Yet another reason we wouldn't recommend dropping out and starting a tech com-
pany is that we're not comparing apples to apples. The kinds of people who drop out
of college and start a tech company are likely different from those who don't, and we
have little way of knowing whether they would have been equally successful had they
not dropped out. That is, following the lessons of chapter 9, this correlation is not an
unbiased estimate of the causal relationship.

But even setting all of these reasons aside, there's a fundamental problem with this
line ofthinking that has to do with correctly measuring your mission. What outcome do
you really care about? Is it your expected earnings or is it your probability ofbecoming a
multi-billionaire? To the extent that dropping out of college and starting your own tech
company makes you more likely to be one of the richest people in the world, it probably
also makes you more likely to be in serious debt. And for all we know, it might signif-
icantly reduce your expected earnings, even if it increases your chances of becoming
very wealthy. Is that a gamble you're willing to make?

We're not here to tell you what your particular objectives should be. Some people may
have a deep desire to become a billionaire, which makes them willing to take significant
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risks. But we suspect most people are more averse to risk and would rather maximize
their expected earnings or perhaps even minimize their chances of being in poverty.
Your particular objective should inform the analyses you conduct. If your goal is to
maximize expected earnings, it might be a huge mistake to examine the correlates of
being on the Forbes list ofwealthiest individuals. Instead, you'd want to collect data on
earnings to see how various educational and career choices correspond with earnings,
on average. We suspect you'd find that graduating from college and perhaps even going
to professional school is a better predictor of earnings than dropping out and starting
your own company.

This mistake of studying the wrong outcome can be made in the other direction
as well. If you're managing a political campaign or coaching a sports team, you don't
really care per se about your expected point margin or vote share. What you care about
is winning, so you should choose strategies that maximize that objective. For example,
if your political candidate is polling badly and there's only a week left in the campaign,
you might be willing to gamble on an otherwise ill-advised strategy to give yourself a
chance ofwinning. Maybe you decide to roll out a really aggressive new policy proposal
that the voters probably won't like. In expectation, such a strategy reduces your vote
total. But there is a small chance the voters will love your wild idea and you will win. If
you don't really care about vote share (losing by five points or ten points is still losing)
but only care about winning, a strategy that hurts your expected vote share may be
optimal.

And, of course, this measurement problem doesn't only apply to outcomes. It also
applies to measuring treatments. This is perhaps most clear when the variables we mea-
sure are meant to represent abstract concepts. We have to think clearly about what,
exactly, we are measuring when we rank some countries as more or less democratic
than others or some classes more or less difficult than others. But this concern can also

emerge even when we are measuring more concrete quantities in the world. Here's an
example.

Climate change and economic productivity
Many people are interested in the long-run effects of climate change on economic
growth. Climate change, of course, happens over a long period of time and, thus, is
hard to measure and study. But related phenomena, such as weather and temperature,
vary frequently. So scholars sometimes use variation in the weather to try to learn about
the effects of climate change.

For instance, Marshall Burke, Solomon Hsiang, and Edward Miguel estimate the
effect of unexpected temperature fluctuations on GDP growth using a difference-in-
differences design. That is, they compare the GDP within a country in years when it is
exposed to warmer- versus cooler-than-average temperatures due to naturally occur-
ring atmospheric variation. They find that economic productivity is maximized at an
annual average temperature of 13 degrees Celcius and that it declines precipitously as
the temperature rises. They conclude that "if future adaptation mimics past adaptation,
unmitigated warming is expected to reshape the global economy by reducing average
global incomes roughly 23% by 2100."

This is an important study and an important conclusion. But the caveat offered by the
authors, "if future adaptation mimics past adaptation," points to a critical measurement
issue.
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The authors are interested in the effects of climate change. But the treatment they
measure is temperaturefluctuations. Climate change happens slowly, giving people and
society time to adapt. Temperature fluctuations happen quickly, making adaptation
difficult. Moreover, unlike temperature fluctuations, climate change is associated with
shifts in weather variability, disease vectors, natural disaster prevalence, and so on.
Thus, in important ways, temperature fluctuations do not measure the right treatment.
And, in particular, they don't measure the right treatment in ways that are relevant
for the question of productivity. In light of these measurement concerns, we probably
shouldn't put a lot of faith in that 23 percent estimated effect.

To appreciate the distinction, consider the difference between the effects of a hot day
on economic productivity versus the effects of a hot century. We live in Chicago, which
can be a pretty cold place. If we were pleasantly surprised by an especially warm day,
Anthony might be tempted to leave work early to play golf. But if climate change meant
that every day was warmer, he wouldn't quit his job and play golf every day. And if it
meant that days were warmer, but storms were more frequent, who knows what would
happen to his golf playing. The fact that unexpected hot days decrease productivity
does not necessarily tell us the long-run effects of climate change because we haven't
measured and studied the right thing.

Do You Have the Right Sample?
Studying the right outcome and the right treatment isn't all there is to measuring

your mission. We also need to make sure we have the right sample.
When applying evidence to decision making, we almost always have to take knowl-

edge gleaned in some place and time and try to apply that knowledge to understand
what will happen in another place and time. Essentially we are making an analogy bet-
ween the contexts in which the evidence was generated and the contexts in which we
now wish to apply the lessons we learned from that evidence. So we always have to ask
whether those contexts are sufficiently similar that such an analogy is valid. Otherwise,
we may take actions that are consistent with achieving our mission, but only in a very
different context from the one in which we are acting.

External Validity
The basic problem here is that relationships can differ from context to context. We've

spent a lot oftime so far in this book on what is sometimes called internal validity. Inter-
nal validity is about credibly estimating the estimand (e.g., Is the estimator unbiased?).
But even if you've done everything right with respect to internal validity, you still need
to be able to think clearly about whether that relationship is likely to also exist in the
context where you hope to apply it. Broadly, this is the problem of external validity.
External validity is about whether there are good reasons to believe that a relationship
estimated on data from one context will hold in some other context. An example will
help to illustrate the point.

Malnutrition in India and Bangladesh
In the 1980s, the World Bank implemented the Tamil Nadu Integrated Nutrition Project
(TINP) in a region of southern India where malnourishment was endemic. While the
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project included some resources for supplementary nutrition, the main focus was on
helping mothers, the main household decision makers concerning food purchasing
and preparation, make better use of the resources already at their disposal. The TINP
is viewed as a major success by the World Bank. And, while there is some debate, it
is widely credited with making a major difference in reducing malnourishment and
malnutrition in Tamil Nadu.

This apparent success inspired the Bangladesh Integrated Nutrition Project (BINP)
in the 1990s. By that time, Bangladesh, which borders India to the east, was among
the most malnourished countries on earth. Evidence suggests that, in the early 1990s,
almost two-thirds of Bangladeshi children under the age of five had growth stunting
due to malnourishment.

Because the TINP had been rigorously evaluated and shown to have made a sig-
nificant and meaningful dent in malnutrition, the BINP was modeled quite directly
on the TINP. And so scholars and practitioners alike were surprised when the BINP s
impact did not live up to the promise of the TINP. Despite being designed to replicate
perhaps the most successful malnutrition intervention in history, rigorous evaluation
shows little to no impact of the BINP on malnutrition. What went wrong?

There are, of course, many possible answers. And it is virtually impossible to know
for sure why the program failed. But one important factor seems to have been a cul-
tural difference between Tamil Nadu and Bangladesh. As we've mentioned, in Tamil
Nadu, mothers are typically the chief decision makers regarding food purchasing and
preparation. Thus, it made sense to target mothers for the TINP s nutritional education
efforts.

This focus on mothers was exported directly from the TINP to the BINP. But in many
households in Bangladesh the father or the mother-in-law (i.e., the fathers mother),
rather than the mother, has authority over food purchasing or preparation. Because this
was not the case in Tamil Nadu, these important decision makers were not targeted by
the BINP. Thus, the BINP may have failed, at least in part, because a targeting decision
that made perfect sense in one setting was no longer so sensible in another.

This example is particularly interesting to us because it points to the potential for a
complementarity between quantitative evidence and qualitative knowledge. Assessing
the impact of the TINP required a quantitative approach. But attempting to apply that
knowledge to the Bangladeshi context went wrong because ofa lack ofknowledge about
key cultural and institutional differences between Tamil Nadu and Bangladesh. A team
that combined both people with expertise in quantitative assessment who could think
clearly about the causal effect of the TINP and people with deep qualitative knowledge
of the two contexts might have resulted in a better outcome than either alone could
hope to achieve.

Selected Samples
A particularly common way for people to end up measuring their mission in

the wrong context is by studying selected samples. A selected sample is a sample of
observations that wasn't drawn at random from the population ofinterest but rather was
selected to be studied because it possessed some set of characteristics. The problem, of
course, is that a selected sample may not be representative of the population as a whole.
And relationships that hold in that selected sample may not hold in the broader popula-
tion. If your mission is to predict, understand, or influence the behavior of the broader
population, things can really go wrong if you rely on evidence from a selected sample.
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College admissions
Here's an example that is near and dear to our hearts. Standardized test scores, for better
or worse, have been an important part of the college admissions process for decades.
However, in 2018 our own university announced that it would no longer require appli-
cants to submit such scores. (Several other colleges and universities have done likewise.)
One (among several) of the rationales for going test-optional was evidence-based.
University leaders looked at the students who attended the university and found lit-
tle correlation between test scores and performance. So, the argument went, maybe test
scores arent very good predictors of college performance.

The mission of a college admissions office is multifaceted. But part of that mission is
to identify the most academically talented students from the pool of applicants. To ful-
fill this mission, the admissions office would like to know whether some characteristic
ofapplicants (here, their test scores) is correlated with academic performance in college.
But that is not the question the exercise described above addresses. Rather, that analysis
asks whether some characteristic of enrolled students (namely, their test scores) is cor-
related with academic performance in college. But the answer to those two questions
need not be the same.

The set of enrolled students is a selected sample of the set of applicants. Students
were admitted to college based on their test scores and other factors like writing ability,
teacher recommendations, grades, community service, and overcoming adversity. The
fact that test scores were used in admissions can lead to a fundamentally different corre-
lation between test scores and academic performance in the selected sample ofenrolled
students and the broader set of applicants.

To see how, think about students with low test scores who were nonetheless admitted
to the university. Those students must have had some other characteristics that led the
admissions office to overlook their low scores. Maybe they wrote stellar essays, had par-
ticularly strong recommendations from teachers, or made great grades in high school.
Similarly, students with particularly high test scores were likely to have been admitted
even with somewhat weaker performance on these other dimensions. For this reason,
in the set of admitted and enrolled students, we might expect a negative correlation
between test scores and other markers of academic quality.

Now, its quite plausible that test scores are a good predictor of college perfor-
mance among all applicants, but that writing ability, teacher recommendations, and
high school grades are also good predictors. Therefore, once we look at the selected
sample of enrolled students, we'll find a weak correlation between test scores and per-
formance. But that's because the only people with low scores who got in are people who
are really strong on other dimensions. So that weak (or non-existent) correlation in the
selected sample of enrolled students does not mean that test scores are a bad predictor
of academic performance among applicants.

This issue ofstudying selected samples is also prevalent outside the context ofcollege
admissions. So let s talk through one more example: baseball.

Why cant major league pitchers hit?
Major League Baseball fans know that pitchers tend to be the worst hitters on their
teams. In the National League, where pitchers are required to bat, managers will typi-
cally have their pitchers hit last in the lineup to minimize their trips to the plate. And
if a pitcher is coming out of the game, the manager will always replace them with a
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pinch hitter. In the 2017 Major League Baseball season, the batting average for the aver-
age pitcher was .125. The batting average for the average non-pitcher was .259. This is
a massive difference. The American League has a designated hitter rule specifically so
that pitchers don t have to bat.

So why are major league pitchers so bad at hitting? Ifyou ask a baseball expert, they'd
probably tell you that pitchers spend so much time practicing their pitching that they
don t have time to practice their hitting. And there might even be something about
great pitchers that makes them weaker hitters. Perhaps the kind of strength, flexibility,
or body type that's good for pitching is bad for hitting.

These explanations sound pretty compelling, and they're probably right to some
extent. But they also probably are not the whole story. One way to start to see this is
to notice that this pattern does not hold for high school baseball.

We collected data on four Chicago-area high school baseball teams from the 2018
season and calculated the batting average for non-pitchers and pitchers (defined as play-
ers who pitched more than ten innings in the season). Unlike the pros, among these
high school players, the pitchers actually have slightly higher batting averages than the
non-pitchers: .322 versus .317.

How can this be? Why is the correlation between pitching and hitting ability slightly
positive for high school baseball players but negative for seasoned professionals? It's not
as if pitching practice doesn't crowd out batting practice for young pitchers. And you'd
think the arguments about physical specialization would apply in high school as well as
in the major leagues. So why does the correlation seem to change so dramatically and
even flip signs as players age?

Even at the professional level, we can see that there wasn't always a negative corre-
lation between pitching and batting ability. Figure 16.3 shows the batting average for
the average pitcher and the average non-pitcher in Major League Baseball from 1871
to 2017. In the nineteenth century, pitchers and other position players had comparable
batting averages. But starting in the twentieth century, the pitchers appear to get worse
at hitting relative to other players, with the gap gradually increasing over time. And in
the modern era, as we already discussed, non-pitchers get approximately twice as many
base hits per at bat as do pitchers.

We suspect that the explanations for the changing correlation over time and the dif-
ference in correlation between high schoolers and the professionals is one and the same.
And it has to do with selected samples.

Start by thinking about the correlation between pitching and batting ability in the
entire population. Suppose we just randomly sampled individuals (say, teenagers and
older) from the whole world and asked them to play baseball so we could measure their
pitching and batting abilities. What do you think we would find? We suspect that we'd
find a pretty strong positive correlation. Some people are athletic and have experience
playing baseball. They are likely to be good at hitting and pitching. Other people are
uncoordinated and inexperienced. They are likely to be bad at hitting and pitching. So,
in the population as a whole, you're likely to find exactly the opposite correlation from
what you find among professionals.

To see why this is, think about how a person becomes a Major League Baseball player.
They almost surely play high school ball. A high school coach is trying to assemble the
best team possible. That involves choosing the players, from the set of players avail-
able, who offer the best combination ofbatting and pitching ability. To make your high
school team, you have to be pretty good at some combination of hitting and pitching.
But you don't have to be amazing—you can be a good hitter (even if you are a bad
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Figure 16.3. The negative correlation between pitching and hitting skill in the major leagues has gotten
stronger over time.

pitcher), a good pitcher (even ifyou are a bad hitter), or an at least passable pitcher and
hitter.

For most players, the path to the major leagues runs through the minor leagues.
Minor league coaches are also trying to assemble the best team possible. And so, they
too need the best combination of hitting and pitching available. So, to make a minor
league team, you have to be really, really good at some combination ofhitting and pitch-
ing. That means being a great hitter (even ifyou are a bad pitcher), a great pitcher (even
if you are a bad hitter), or an at least good pitcher and solid hitter.

Finally, to make the major leagues (at least the National League, where pitchers hit),
the test is even more stringent. YouVe got to be a truly amazing hitter (even if you are
a bad pitcher), a truly amazing pitcher (even if you are a bad hitter), or a pretty great
pitcher who can also hit.

Below is a simple demonstration (with hypothetical data) of what these ever more
stringent selection criteria do to the correlation between hitting and pitching ability
in different samples. Suppose (for simplicity) that we can give every potential base-
ball player a score that separately summarizes their pitching and batting abilities, and
teams want to recruit players with the highest possible sum of both pitching and bat-
ting ability. How high that sum needs to be is increasing as you move up the ranks of
baseball.

In the top-left panel of figure 16.4, we've drawn a scatter plot of some data with a
strong positive correlation between pitching (horizontal axis) and batting ability (verti-
cal axis). This is meant to represent the entire population. Ifwe just let everyone on the
team (as an entry-level team for kids might do), we'd see a pretty strong positive corre-
lation between pitching ability and batting ability. This seems right to us. Our memory
of youth sports is that the kids who were the best at one aspect of the game were often
the best at every aspect of the game.
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Figure 16.4. Increased selection can turn a positive correlation into a negative correlation.

The upper-right panel of figure 16.4 is meant to represent high school or the major
leagues in the nineteenth century. In high school, the coach is only willing to accept
players who are above average in the population, which translates into having a sum of
batting and pitching ability above 0. Similarly, in the nineteenth century, baseball wasn't
that popular, so professional coaches couldn't be so selective. You can make a team like
this by being a good batter (say, a 3) and a weak pitcher (say, a —2); a good pitcher
(say, a 3) and a weak hitter (say, a —2); or a slightly above-average pitcher and hitter
(say .5 on both). But this level of selectivity eliminates people who are bad at both. And
so, among the selected sample of high school or nineteenth-century baseball players,
there's little correlation between batting and pitching ability.

The panel on the bottom left might represent the minor leagues or the early twentieth
century. Selectivity has increased. Players need at least a 3 to make the team. So bad
pitchers must be genuinely good hitters, bad hitters must be genuinely good pitchers,
and some players can make the team by being solid at both. By eliminating even more
players who are only okay at both, this level of selectivity flips the relationship from that
in the population—inducing a slight negative correlation between batting and pitching
ability.

Finally, the panel on the bottom right might represent the contemporary National
League. Here selectivity is very high, since only an elite few can make it. So bad pitchers
must be truly great hitters, bad hitters must be truly great pitchers, and for players to
make it with a combination of skills, they must be terrific at both. At the highest levels,
then, we expect to see a strong negative correlation between pitching and batting ability,
even without any difference in time spent practicing or body type.
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Figure 16.4 illustrates a fairly general phenomenon. Correlations in selected samples
are often quite different from those in the broader population. This is important because
we often only have data on selected samples. But we may want to make predictions and
inferences about the broader population.

If you're a baseball scout, you have rich data on major league players available to
you. You might try to use the data to predict who will become a star player so you can
search for those features among high school and college athletes. But if you look for
correlations of great performance among major league players, you'll draw misleading
inferences. For example, you might find that slow runners are really good power hitters.
So should you go find the slowest runners and recruit them to play professional base-
ball? Surely not! The reason that slow runners are good power hitters in your selected
sample is the same as the reason good pitchers are bad hitters. The only way a slow
runner can make it to the major leagues is if they're a great power hitter.

Strategic Adaptation and Changing Relationships
There is another key issue for thinking about measuring your mission. Sometimes,

there is a true relationship in the world that would help you achieve your goal. But
once you actually use that relationship to try to do so, strategic adaption makes that
relationship itself disappear or change, so that it is no longer so helpful. To see how this
works, let's look at some examples of this phenomenon throughout history.

The Duty on Lights and Windows
In 1696 King William III of England needed money. Kings, of course, always need

money. But this need was particularly pressing. Up until the 1660s, Britain produced
coins made of hammered silver. These coins had a serious problem—people shaved or
clipped the valuable silver around the edges. As a result, the value of the coins in silver
was less than their face value. This widespread practice of coin clipping threatened to
undermine the credibility of English currency.

To address the problem, the Crown undertook the great recoinage of 1696, offering to
buy back clipped coins in exchange for new, machined coins that could not be clipped.1
But buying back clipped coins for proper coins was expensive. The Crown essentially
had to make up the difference between the face value and the value of the silver. So the
Crown needed to raise revenue. But how to do so?

The Crown wanted to tax the wealthy more than the poor. One natural way to achieve
this is through an income tax. But the English were opposed to income taxes because
assessing income involved an invasion ofpersonal privacy. So the Crown needed to find
a way to tax wealth that was more politically palatable. The solution they landed on was
a duty on lights and windows, better known as the window tax.

The window tax had the virtue that it could be assessed from outside of a home,
thereby limiting any invasion of privacy. In the earliest version of the tax, the Crown
established a two shilling base fee for all homes. In addition, homes that had between
ten and twenty windows paid an extra four to six shillings and homes that had over
twenty windows paid an extra eight to ten shillings. Windows in rooms used for work

^un fact: The new coins couldn't be clipped because they had milled edges, a feature that persists today, even
though our coins are not made ofprecious metals. Milled edges were an innovation created by Isaac Newton in his
role as warden of the Royal Mint at the time of the great recoinage.
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didn't count. The exact thresholds and fees changed over time (such taxes lasted for well
over a century), but you get the basic idea.

The argument for the window tax was an obvious correlation between windows and
wealth (of course, they wouldn't have put it in those terms). On average, people whose
houses had more windows were wealthier. Thus, by taxing windows, the Crown could
raise revenues in ways that put more of the burden on the rich and less on the poor,
which was the mission.

But the story doesn't end there. The English, like many others, don't like to pay taxes.
And so they strategically adapted. In the short run, windows were boarded up or bricked
over to reduce the taxes owed. Over the long run, architecture changed. Larger homes
began to include fewer windows and more rooms that could be presented as work
rooms. And so, with the passage of time, both the revenue from and the progressivity
of the window tax declined.

In this case, the Crowns mission was to raise revenue in a progressive way. To do so,
it needed to identify and tax wealthier people without invading their privacy. It noticed
a correlation between windows and wealth, which seemed like just what it needed to
achieve its mission. But, using that correlation in service of its mission led homeown-
ers to strategically adapt their behavior such that the correlation no longer held (or, at
least, held much less strongly), undermining the mission. Thus, in considering some
change in behavior or policy in response to some piece of evidence, one must always
ask whether the relationship uncovered by the evidence will persist once you change
your behavior or policy.

The Shift in Baseball

We know we've already spent a good bit of time on baseball in this chapter. But,
if you'll indulge us, we would like to do one more example. It is a pretty good one
for illustrating the idea of strategic adaption changing the usefulness of a statistical
relationship.

There was a time when defenders in baseball stood in their spot and waited to see
if the ball would come their way. To be sure, fielders would adjust their position a bit
depending on whether a left-handed or right-handed batter was up. But, for the most
part, defensive strategy wasn't too complicated.

That time came to an end with the rise ofbig data in professional sports. Now teams
have detailed spray charts for every batter. These charts provide data on how frequently
each batter hits to various parts of the field, whether they hit the ball on the ground
or in the air, the angle at which they make contact with the ball, and so on. Using this
kind of information, teams can make well-informed forecasts about exactly where a
given batter is likely to hit the ball. And armed with such forecasts, teams have started
adjusting their defensive setups aggressively, batter by batter.

The most famous version ofthis change in defensive strategy is called the shift. Exam-
ining spray charts, teams discovered that when batters (especially power hitters) hit the
ball on the ground, it is almost never to the so-called opposite field (for right-handed
batters, this is to their right, and for left-handed batters, this is to their left). Rather, if
they are going to hit the ball on the ground, they pull the ball (i.e., right-handed batters
hit it to their left, and left-handed batters hit it to their right). The shift is the obvi-
ous response to this correlation—when facing a right-handed batter, shift the infield
way over to the batter's left, and when facing a left-handed batter, shift the infield way
over the batter's right. The benefit of such a move is that it makes it much less likely
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that a ground ball that is pulled will sneak through a hole in the infield for a base hit.
The cost of this strategy is that it leaves a big hole in the infield in the opposite field.
But since batters find it very hard to hit ground balls to the opposite field, this cost is
small.

A few teams started shifting aggressively in the late 2000s. In 2010, the Tampa Bay
Rays—led by manager Joe Maddon, an early advocate for evidence-based defense—
accounted for 10 percent of all shifts, although they were just one of thirty teams.
Maddon consulted spray charts and strategically placed his infielders in locations that
were optimal for the particular pattern of ground balls associated with each batter.
The Rays and other early adopters had a lot of success. That is, there was a negative
correlation between using the shift and runs allowed.

Observing this correlation, all teams started implementing the shift. In 2011, there
were only about 2,000 shifts used in total across all Major League Baseball games. By
2014, that number had grown to 13,000. And in 2016, it reached over 28,000.

But something else happened too. At first, the correlation that inspired this surge in
shifting held. Teams that shifted allowed fewer runs. But batters noticed that the shift
was hurting them. And they strategically adapted to avoid hitting so many ground balls
into the shift. Instead, they hit more balls to the opposite side of the field, and they hit
more balls in the air—over the shifted infield.

As things stand today, major league teams still use the shift a lot. But, because hit-
ters adapted, the correlation between shifting and runs allowed that drove teams to use
the shift in the first place does not hold nearly as strongly as it used to. Setting defen-
sive strategy in response to the correlation led to changes in behavior that undid that
correlation. It is perhaps worth noting that Joe Maddon—the early innovator who, as
manager ofthe Rays, helped make the shift so popular—remains a believer in evidence-
based defense. He later won a World Series as the manager of the Chicago Cubs, where
he employed the shift less than any other manager in Major League Baseball.

The War on Drugs
Before leaving the topic ofwhether things will change once you act, it is worth paus-

ing to reflect on the overlap between this question and our earlier discussion of the
problem ofpartial measures. That overlap comes from the fact that strategic adaptation
can create both phenomena.

Remember what we are concerned about in the case ofpartial measures. Suppose you
have only a partial measure of your mission (like hijackings). You take an action and
things appear to improve on that measure. But there might have been strategic adap-
tation such that getting better on that one dimension of your mission implied getting
worse on some other dimension. Hence, improvements on your partial measure may
not mean improvements on your overall mission.

Strategic adaptation is again at the root when we worry about whether things will
change once you act on some piece ofevidence. There is some relationship in the world.
You act on that relationship. People adapt to your actions. And, thus, the relationship
disappears.

Many examples can fit into both categories, depending on how you think about them.
Let us give you one last example to illustrate the point, this time about Americas so-
called war on drugs.

As we write, most of the illegal drugs in the United States enter the country through
Mexico, a country that has been ravaged by a decade-long drug war. But this was not
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always the case. In the 1970s and early 1980s, very few drugs reached the United States
through Mexico. The transshipment route of choice was through the Caribbean and
into Florida.

In 1980, the United States government launched a major offensive against the Colom-
bian drug cartels. The Drug Enforcement Administration, Coast Guard, and other
agencies deployed thousands ofpersonnel and considerable naval and air power to shut
down the Caribbean transshipment route. By the mid-1980s, the flow of drugs into
Florida had plummeted.

But that is not the whole story. The reduction in drugs flowing through the Caribbean
and into Florida in the 1980s does not reflect a reduction in drugs flowing into the
United States during that period. Indeed, drugs continued to enter the United States at
increasing rates, as evidenced by the fact that the price of cocaine plummeted fourfold
during the course of the 1980s despite soaring demand.

So what happened? The Colombian cartels abandoned the Caribbean and Florida in
favor of Mexico. In 1989, one-third of all cocaine in the United States entered through
Mexico. Just three years later, that number had increased to one-half. Today, 90 percent
of cocaine sold in the United States is smuggled up from Mexico.

This adaptation by the drug organizations has had devastating effects on Mexico.
Throughout the 1990s, the Mexican drug trafficking organizations became larger and
more powerful. They shifted from being middlemen for the Colombians to having
their own suppliers and distribution networks. The drug trade became larger and more
important—by the mid-1990s the Mexican drug trade was worth roughly $20 billion,
dwarfing Mexico's largest legal commodity, oil, with a value of about $7.5 billion. As
this expansion occurred, Mexican drug organizations became more fragmented and
more violent. In 2010, the Mexican drug war claimed more than one thousand lives
per month. The Mexican government struggled to exert basic control over parts of the
country.

One can fruitfully think about this story from both the partial measures and the
changing relationship perspectives.

From the partial measures perspective, here's how you'd tell it. The US government
had a mission of stopping the drug flow. It noticed that almost all the drugs came up
through the Caribbean. So it collected data—drugs flowing through the Caribbean—
that was only a partial measure of the overall counter-narcotics mission. Then it took
actions that made things improve according to that partial measure. But to conclude
that the policy was a success would be a mistake. Because ofstrategic adaptation, getting
better on that partial measure (drugs coming through the Caribbean) goes along with
getting worse on other dimensions of the problem (drugs coming through Mexico).
Here, the story illustrates the importance of not over-interpreting improvements on a
partial measure ofyour mission.

From the changing relationship perspective, we tell the story slightly differently. There
was a real correlation in the world—drugs were much more likely to enter the United
States through the Caribbean than anywhere else. The government decided to act on
the basis of this relationship by targeting its interdiction efforts in the Caribbean and
Florida. Drug traffickers strategically adapted their behavior in response to this action,
moving transshipment to Mexico. And so, as a consequence of the government s own
actions, the correlation that formed the basis of the governments actions ceased to
exist.

Both of these perspective are right. Which is more useful depends on the particular
question you are trying to answer and the context in which you are trying to answer it.



Measure Your Mission 353

Wrapping Up
Measuring your mission, like all the other lessons weVe discussed, is an essential part

of thinking clearly about how to use quantitative information to make better decisions.
But, no matter how clearly you think, there are limits to what data and evidence can tell
you. In chapter 17 we conclude the book by exploring some of those limits.

Key Words
• Internal validity: An estimate is internally valid if it is a credible estimate of

the estimand (e.g., the estimator is unbiased).
• Externalvalidity: An estimate is externallyvalid ifthere is good reason to think

the relationship will hold in a context other than the one from which the data
is drawn.

• Strategic adaptation: Changes in behavior that result from an attempt to avoid
the effects of a change in someone else s behavior.

• Selected sample: A sample of data that wasn't drawn at random from the pop-
ulation of interest but rather was selected to be studied because it possessed
some particular set of characteristics.

Exercises

16.1 People who have already contracted COVID-19 and recovered from it are less
likely to contract the disease again because of the immunity they have devel-
oped. However, a 2020 study published in the The Lancet suggests that those
rare individuals who do contract the disease twice appear to experience worse
symptoms the second time around. Using the thinking principles from this
chapter and the fact that, because of limited testing, not all cases of COVID-19
are detected, provide an account ofwhy this phenomenon might occur even
if there is no biological mechanism that makes a second case of COVID-19
worse than a first case. Should this make you skeptical of the claim that people
tend to experience worse symptoms when they contract the disease a second
time?

16.2 Over the past several decades, high-stakes testing has become an increasingly
important part of American education policy. The idea of high-stakes testing
is to create consequences for students, teachers, or schools associated with per-
formance on standardized tests. The hope is that this will improve educational
achievement by creating incentives for better performance. Standardized
test scores are, at best, a partial measure of educational achievement. Give
an example ofwhy some policy intervention that leads to an improvement
in test scores might nonetheless not be leading to an overall improvement in
educational outcomes.

16.3 In a required math sequence at the United States Air Force Academy, students
take the same exams but are randomly assigned to different sections taught by
different instructors. Scott Carrell and James West show that students assigned
to an instructor with better teaching evaluations perform better on the course s
exams. But they also show that being assigned to a popular instructor decreases
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students' scores in subsequent math classes. What might explain this puzzling
pattern? How does it relate to the problem of failing to measure your mission?

16.4 The way high-stakes testing is implemented in primary and secondary edu-
cation is typically based on thresholds. A student passes the test if they get a
score above some minimal cutoff. And a school is deemed to be meeting stan-
dards if the number of students passing the test is above some other minimal
threshold.

(a) Think of students in three categories: those who will pass the test no
matter what, those who will pass the test if and only if they get teacher
attention, and those who will not pass the test no matter what. Which
students does high-stakes testing of this form incentivize teachers to
focus on?

(b) Derek Neal and Diane Whitmore Schanzenbach studied the imple-
mentation of high-stakes testing in the Chicago public schools that we
discussed in exercise 1 of chapter 13.

But, unlike in that question, the average effect of high-stakes test-
ing isn't quite what they wanted to know about. They wanted to know
whether high-stakes testing affected different kids differently.

To get at this, Neal and Schanzenbach used a difference-in-
difference-in-differences design. They started by using the third-grade
tests to divide students into ten groups (deciles). They then perform a
difference-in-differences analysis separately for each of these deciles.
This allows them to learn about the difference in the difference-in-

differences estimate of the causal effect of high-stakes testing across
kids in the different deciles. Their findings are reflected in the figure.
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Is this evidence consistent with your answer to part (a) of this
exercise? Explain.
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(c) In light of this, is a simple difference-in-differences design that uses
the percentage of students passing the standardized tests a good way to
evaluate whether high-stakes testing achieves its mission? Why or why
not?
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CHAPTER 17

On the Limits of Quantification

What You'll Learn

• Data and quantitative evidence dont tell us everything we need to know to
make decisions.

• Sometimes the relevant evidence is inconclusive or non-existent, but this
doesn't necessarily mean the right decision is to do nothing or to stick with
the status quo.

• If were not careful, quantification can have unintended ethical and equity
implications.

• The data doesn't tell us what our goals are. Decisions must be made by thinking
about both the effects of our actions and also our values.

Introduction

Data and quantitative analysis are full of promise for improving our lives and the
world. But they have limits. WeVe seen many examples of the ways in which we must
think clearly to use evidence well. Ifyou mistake correlation for causation, ignore rever-
sion to the mean or the over-comparing/under-reporting problem, try to establish
correlation withoutvariation, or pretend the data speak for themselves rather than view-
ing thinking and data as complements, quantification can lead you astray—resulting in
worse, rather than better, decisions. Avoiding these pitfalls is exactly why we ve worked
so hard together to learn to think clearly about data and evidence.

We want to end by reflecting a bit on some slightly different limits of quantification
and evidence-based decision making. These are not limits that come from a lack of
clear thinking about some specific piece of quantitative analysis. Rather, they have to
do with the realization that, important as evidence is, there is no such thing as a purely
evidence-based decision. This is true for at least two reasons.

First, for many critical decisions, credible evidence is limited or even non-existent.
But decisions still must be made. Indeed, even the decision not to act is a decision. So, it
is important to think clearly about what we do when faced with an absence of evidence.

Second, the right decision can never be identified by evidence alone. Evidence is
meant to be a tool used in service of our goals and values. But sometimes it seems like
the tail wags the dog—our values become subservient to the dictates of quantification.
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This is a dangerous mistake that must be guarded against through vigilance and clear
thinking.

Decisions When Evidence Is Limited

There's an old parable that goes something like this. A drunk man is stumbling on
the sidewalk looking for his keys under a lamppost. A passerby asks what he's doing,
and the man responds, "Looking for my keys." The passerby inquires, "Where did you
last see them?" to which the man answers, "I think I dropped them in the park across
the street." The passerby reasonably asks the man why he is looking under the lamppost
if he dropped his keys in the park across the street, and the man replies, "Its dark over
there, I can t possibly find them in the dark! This is where the light is."

Cliched though it may be, this parable illustrates an important point about quantifi-
cation. We look where the light is. Not everything can be easily measured or quantified.
And so, the analogue of looking where the light is in our data-driven world is narrow-
ing our frame of vision to focus only on those things where quantitative evidence is
available.

But such a narrowing poses real risks. First, we might end up simply ignoring
crucially important problems because we don't see how to make an evidence-based
decision. The fact that quantitative evidence isn't available to answer a question doesn't
mean the question is unimportant or safely ignored. Second, the demand for evidence
has the potential to create a kind of status quo bias. When someone says, "There's no
evidence for that action," they might mean two different things. They could mean that
lots ofwell-powered, well-designed studies have looked and turned up no evidence. But
they could also mean that the action has never been studied (or even tried) before, so
there is literally no evidence one way or the other. In the former case, it may be reason-
able to not take the action. But in the latter case, there is simply no evidence available
to guide us. If there are other good reasons to believe acting makes sense, it would be a
mistake to let the absence of evidence force you into sticking with the status quo. Let's
see some examples of these risks.

Cost-Benefit Analysis and Environmental Regulation
For the U.S. governments Office of Information and Regulatory Affairs (OIRA)

within the Office of Management and Budget (OMB), quantitative evidence is the law
of the land. A quantitative cost-benefit analysis is required for many new regulatory
actions taken by executive agencies, and OIRA can essentially veto such regulations if
they are unsatisfied by the evidence.

As we have discussed, not everything can be easily quantified. But, without quan-
titative evidence, OIRA approval is typically a non-starter. As a result, like the drunk
man searching under the lamppost, regulators are forced to focus on those areas where
quantification is possible, whether or not those areas are the places most in need oftheir
attention.

Lisa Heinzerling, former head of policy at the Environmental Protection Agency
(EPA), describes the bleak terms in which a former EPA staffer put it: "We're constantly
asking ourselves not, 'Is this the right thing for environmental protection?' but, 'How
can we make this acceptable to OMB?'"

In some sense, of course, requirements to quantify must frustrate regulators. The
point of such requirements is to change the kind of regulation we get by changing
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regulators' behavior. The concern, however, is that these sorts of requirements don t
simply prevent the EPA (and other agencies) from creating regulations for which the
cure is worse than the disease. They also distort incentives in ways that narrow our
field of vision. The mandate to quantify discourages agencies from bothering to work
on regulations for which there are good arguments, but for which it is impossible, or
too expensive or impractical, to quantify the costs and benefits. For example, in a typical
EPA report about the regulation ofan environmental contaminant, the regulators might
discuss diseases and health conditions that they believe are affected by the contaminant.
However, those diseases will only be incorporated into the cost-benefit analysis if we
have a way to estimate the effect of the contaminant on disease risk and we have quan-
titative estimates of the monetary costs of the disease. And if they arent included in the
cost-benefit analysis, they wont have much sway over OIRAs decision making.

A well-known example is the controversy over the EPAs decision to tighten regula-
tions on arsenic in water in the early 2000s. The EPA report making the case for the
regulation lists a vast array of diseases that arsenic is believed to increase risk of. These
include bladder, kidney, lung, liver, and prostate cancer, as well as a variety of other
diseases with cardiovascular, pulmonary, immunological, neurological, and endocrine
effects. However, the EPA notes that, because of lack of data, "the quantified benefits"
included in their analysis concern only the effects of arsenic on "bladder and lung can-
cers." The rest of the health benefits of reduced arsenic exposure cannot be quantified.
To their credit, the EPA used qualitative information to estimate these broader effects.
But because of the demand for quantification, such estimates were easily dismissed in
the ensuing controversy.

Floss Your Teeth and Wear a Mask

Two examples slightly closer to home illustrate why there are often good reasons to
act, even absent quantitative evidence.

Floss your teeth
For years, Anthony flossed his teeth thoroughly every day because his dentist-spouse
told him to do so, and because he believed her when she said that flossing is good for
his health. But then, back in 2016, in the name of evidence-based decision making, the
New York Times published an article entitled "Feeling Guilty about Not Flossing? Maybe
There's No Need." It suggested that diligent flossers like Anthony could stop with the
nightly flossing hassle.

The article in question cited a meta-analysis of twelve randomized experiments in
which researchers compared the effects of brushing and flossing to just brushing. The
article reported that the study "found only Very unreliable evidence that flossing might
reduce plaque." So there you have it. An absence of evidence for flossing.1

So why hasn't Anthony stopped flossing? One reason, as discussed in chapter 6, is
that failure to reject the null is not proof of the null—that is, absence of evidence is not
(conclusive) evidence of absence. Even if we have no statistically significant evidence
that flossing reduces plaque, this doesn't mean that flossing has no effect. What if the
studies have low statistical power because of small sample sizes or large numbers of

lrThe meta-analysis actually does find statistically significant evidence that flossing reduces gingivitis, so the
experimental evidence in favor of flossing is perhaps stronger than the article suggests.
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noncompliers? Perhaps they wouldn't have detected effects even if flossing does reduce
plaque.

Another reason is that researchers haven t studied all of the outcomes of interest. For

instance, the authors of the meta-analysis point out that none of the experiments assess
longer-term effects, nor do they study a variety of important dental outcomes like tooth
decay, tartar, or gum separation.

But even these limitations of the quantitative studies aren t the whole story. As
with many decisions, while we lack sufficient quantitative evidence to answer all of
our questions about the effects of flossing, there are non-quantitative arguments that
are important to consider. Dentists provide compelling biological and mechanistic
accounts of why they believe flossing is beneficial. And so, despite what the contrar-
ian data journalists might say, were pretty comfortable with the decision to floss despite
the fact that the quantitative evidence isn't conclusive. There are good reasons to believe
that flossing is beneficial, even absent a slam-dunk empirical study.

Wear a mask

At the time of this writing, our society is having a similar debate about the effects of
wearing masks in the midst of the COVID-19 global pandemic. Just as with flossing,
there are few compelling, high-powered experiments demonstrating that masks and
facial coverings reduce virus transmission. There are some observational studies that
are subject to the concerns about confounders raised in chapter 9. Some of these stud-
ies focus only on selected samples of people who come into health care facilities with
symptoms, which, as discussed in chapter 16, also creates problems. As with flossing,
when researchers try to conduct a randomized experiment, many ofthe people assigned
to treatment will fail to comply, making it more difficult to assess the effectiveness of
wearing masks. And furthermore, we probably need a very large sample size to obtain
a reasonably precise estimate of the effect of masks or flossing.

Given the lack of definitive evidence on masks, many people—including Donald
Trump and Mike Pence, then president and vice president ofthe United States—decided
to forgo the hassle. Such skeptics sometimes make arguments like "There is no evidence
that wearing a mask matters." But as with flossing, there are good theoretical and bio-
logical reasons to think that masks are effective. We know that coronavirus and many
other viruses are transmitted through respiratory particles, and we have good physical
evidence that masks mitigate the flow of some of these particles. Studies also find that
people who wear masks are less likely to touch their eyes, nose, and mouth, a second
reason why masks likely mitigate transmission.

Of course, we aren t certain that we know the right answer, and we hope further
studies will improve our understanding of the effects ofwearing masks. But the lack of
definitive, quantitative evidence in favor of one decision is not a compelling reason to
make a different decision—especially if there is also no clear evidence in favor of that
different decision.

Good decision makers use quantitative evidence, but they acknowledge that the
quantitative evidence only tells them so much. They don't ignore certain considera-
tions just because we lack good quantitative estimates for those factors. They use the
best available theory and data to form their beliefs, and they make the best decision they
can, given their goals, values, and those potentially imperfect and uncertain beliefs.

That last sentence pointed to another important thought about evidence-based deci-
sion making. No matter how good the data analysis, evidence alone cannot tell you how
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to act. For that, you need to also think about your goals and values. We end the book
with some reflections on the ways in which quantification and those values interact.

Quantification and Values
Quantitative evidence should help us make better decisions that advance our goals

and values. But ifwe aren't careful, matters can get turned around—our goals and values
can be shaped by the mandate to quantify, rather than quantitative evidence serving our
goals and values.

We are going to think about two ways this can happen. The first is that quantitative
tools can sometimes sneak values into our decision making that we don t agree with,
without our noticing. The second is that the desire to quantify can push us to embrace
values that we might otherwise reject.

How Quantitative Tools Sneak in Values

One risk ofquantification, especially in an age when machine learning and algorith-
mic decision making are increasingly prevalent, is that objectionable values will creep
into decisions without our noticing. For instance, an algorithm may exhibit racial or
gender bias, even if no data on race or gender were used to create the algorithm. This
raises important questions about equity, fairness, and justice that deserve our attention.

Predictive machine learning algorithms get used for all sorts of tasks in the con-
temporary world. Job placement websites use such algorithms to match job seekers to
employers. Banks use them to evaluate credit worthiness. Social media platforms use
them to decide what content and advertisements to feed to users. And judges use them
to inform criminal sentencing decisions.

How can these algorithms end up yielding ethically troubling results? Machine
learning algorithms are, more or less, just fancy ways of using correlations to make pre-
dictions. An algorithm that is race- or gender-blind, in the sense ofnot having access to
data on race or gender, could nonetheless end up making predictions that treat people
with different racial or gender identities differently. This could happen, for example, if
the algorithm has access to data on variables that are correlated with race or if some of
the inputs of the algorithm are themselves subject to bias. We already saw an instance
of this kind of problem in chapter 2, when we discussed how using the correlation bet-
ween Yelp reviews and health code violations to target inspections would sneak in racial
bias. But let s consider another example.

Algorithms and racial bias in health care
In the United States, large health care providers have special programs designed to coor-
dinate the care of people with complex health needs. Such programs are expensive. So
the providers only want to enroll people who are likely to have the greatest care needs.
To try to predict who those patients are, they use machine learning algorithms.

There is a strong positive correlation between health care costs and health care needs
because sicker patients tend to receive more and more expensive treatment. And health
care costs are easier to measure accurately than health care needs. In this study, the
algorithm was asked to predict health care costs. In order to do so, in addition to
data on health care costs, it was fed data on patients' past insurance claims, medical
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diagnoses, and medications. Importantly, the algorithm specifically did not receive any
information about race.

A simple way to think about how this might work is by analogy to regression. Sup-
pose we had data on lots of patients' health care costs in year t and their insurance
claims, diagnoses and procedures, and medications in year t—1. We could run the
following regression:

Costsj =f$Q + fi\ • Insurance Claims^-1 + fc • Diagnoses and Procedures^
+ fa • Medications^-1

Doing so would give us estimated OLS coefficients $0 through #3.
When a new patient, /, comes along, we can predict that patients future health care

costs using this algorithm. We feed that new patients particular values for insurance
claims, diagnoses and procedures, and medications into our regression equation to get

Predicted Costs/ =/*o + Pi * Insurance Claims/ + fo • Diagnoses and Procedures,
+ $3 • Medications/

This is more or less what a predictive machine learning algorithm is doing, but the
algorithms goal is typically somewhat different than minimizing mean squared error,
and it considers more complex functions of the variables than does a linear regression.

A 2019 paper in Science describes a health care provider using such predicted val-
ues to sort patients. Patients with a score above some high threshold were immediately
enrolled in the special program. Patients with a score above a lower threshold were
referred to a physician for further screening.

Even though the predictive algorithm was race-blind, it turned out to systemati-
cally under-estimate how sick Black patients were relative to White patients. This is
illustrated in figure 17.1. Health care needs, as predicted by the algorithm, are on the
horizontal axis. A measure of active chronic health conditions, called a comorbidity
score, is on the vertical axis. This is meant to be a measure of true health care needs. As
you can see, for any given level of predicted health care needs, Black patients turn out
to be sicker than White patients, on average. Thus, Black patients were systematically
less likely to be enrolled in the special program than White patients of similar health.

What might be going on such that this race-blind algorithm is nonetheless giving
racially biased predictions? One possibility is an omitted variable. That is, perhaps
even conditional on past insurance claims, diagnoses and procedures, and medications,
Black patients tend to be sicker than White patients for reasons not observed in the data.
This could result in the algorithm systematically under-estimating the health needs of
Black patients and over-estimating the health needs ofWhite patients.

In this case, however, it seems something slightly different is going on. The health
care provider had the algorithm predict health care costs because costs are easily
measured and are highly correlated with health care needs. But this decision proved
problematic. A systematic fact about the U.S. health care system is that less money
is spent on Black patients on average than is spent on similarly sick White patients.2

2The Readings and References section will point you to a review article documenting the many ways in which
there is bias and discrimination against Black patients in U.S. health care.
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Figure 17.1. The relationship between the algorithmic prediction and actual health is different for Black
and White patients.

This means using cost as a proxy for health care needs introduces racial bias into
the supposedly race-blind algorithm. The algorithm correctly predicts that health care
costs for a Black patient will be lower than for a White patient with similar charac-
teristics (claims, diagnoses and procedures, medications). And that makes it look as
though Black patients are healthier than equally sick White patients. Using the same
inputs, but reformulating the algorithm to predict a measure ofactual health rather than
health-care costs, the authors of the Science article were able to eliminate the racial bias.

This example demonstrates how using quantitative tools can sneak values into our
decision making that we might find objectionable. As the world becomes increas-
ingly quantitative, it takes clear thinking and constant vigilance to make sure that our
decisions are informed by data, but that the values driving those decisions are our own.

This brings us to our next topic, the ways in which quantification can shape the values
that we think of as our own in potentially troubling ways.

How Quantification Shapes Our Values
Moral and political philosophers describe a rich variety of ethical concerns that one

might consider when evaluating the Tightness or wrongness of a decision. For instance,
there are good and convincing arguments for various rights and duties, such as the
right to control ones own body or the duty not to forcibly coerce ones fellow humans.
A reasonable person might maintain that good policy or good actions must respect, or
even promote, such rights and duties, even ifviolating them would lead to higher total
material well-being in the world. This, for instance, is a position often held by principled
opponents of the death penalty or torture or stem-cell research.

There are also good and convincing arguments for having concerns not only with
total well-being but with the distribution ofwell-being. A reasonable person might, for
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instance, be prepared to accept lower total well-being in society in exchange for greater
equality.

But most quantitative policy analysis is rooted in welfarism, the view that policies
should be evaluated on the basis of their implications for human well-being. Moreover,
one welfarist standard predominates over all others: utilitarianism—the view that poli-
cies should be evaluated on the basis of their implications for the sum total of human
well-being, regardless of its distribution. And not just utilitarianism, but what we might
call crass utilitarianism—one that defines well-being almost entirely in terms of mate-
rial costs and benefits such as economic prosperity, health, and other factors that are
(relatively) easy to quantify by assigning a monetary value.

An ethical position consistent with quantifying consequences is, in principle, quite
flexible; it need not be crassly utilitarian. We can put a value on various non-material
factors such as rights, duties, responsibility, dignity, or what have you. Moreover, once
you know the quantitative effects of a policy on peoples well-being, you can introduce
all sorts of equity considerations into policy evaluation. We could, for example, after
quantifying all the effects, define the best policy as the one that maximizes total well-
being, subject to the constraint that everyone is above some minimal threshold.

What crass utilitarianism has going for it over all other normative frameworks—even
other forms ofwelfarism—is that it lends itself easily to quantitative analysis. It is hard
to figure out how to quantify the value of rights and duties or how to weigh equity con-
siderations. It is much more straightforward—both conceptually and practically—to
quantify material costs and benefits and then just add and subtract to figure out whether
a policy or action is good or bad.

Indeed, crass utilitarianism is so easy to work with that it has become a part of
the standard assumptions in the background of many quantitative analyses, especially
in discussions of public policy. The process of trying to maximize net well-being—
ignoring questions of rights, duties, responsibilities, equity, dignity, and so on—is often
so ingrained in our practice and thought that we hardly even notice we are doing it. We
simply take for granted that a good policy is one that maximizes benefits minus costs.

Notice what this means. The goals and values we pursue are shaped in a deep way
by the dictates of quantification. We don t quantify because we are utilitarians. We are
utilitarians because we quantify.

What's the problem with allowing a materialist utilitarianism to define our goals? In
partial answer, we'd like to tell you a story.

Ethan once attended an academic presentation on the effects of removing children
from abusive homes and putting them into foster care. The presenter found that chil-
dren from abusive homes are, on average, better off in foster care. Moreover, the benefits
for the children appear to exceed the costs of providing foster care. Therefore, the
researcher concluded that we should remove kids from these abusive homes.

This seems like a great example of data leading to better policy decisions. We can
quantify the benefits to children and choose policies that make them better off. We can
even show that the benefits to the children exceed the dollar costs to society. So it looks
like a clear win. Fantastic.

One of the attendees, someone who has held several senior positions in government,
objected. The main critique was that the researcher had not estimated all of the rel-
evant costs and benefits to make a policy recommendation. Specifically, what if the
abusive parents derive benefits from keeping their children (and presumably, contin-
uing to abuse them)? If the value to them ofkeeping the kids is big enough, then might
that not reverse the conclusions of the cost-benefit analysis?
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Now, you might think that a reasonable response to this line of questioning would
be something like, "Well, if one were an unflinching utilitarian that would be right. But
there are other values, and personally, I think we ought not give a damn about whether
abusive parents want to keep their children. We should focus on what's best for the kids
and for the rest of society." But that, in fact, was not the presenter's response. Instead,
the presenter conceded the point, acknowledging that he really couldn t say whether or
not taking kids out of abusive environments was good policy without knowing how it
affected those kids' parents.

Or consider another example. In the early 1990s, the chief economist of the World
Bank, Larry Summers—former president of Harvard, President Obama's chief eco-
nomic advisor, and President Clintons treasury secretary—circulated a memo written
by his staff. It contained the following thought:

Shouldn't the World Bank be encouraging more migration of the dirty industries
to the LDCs [Less Developed Countries]?... The costs ofhealth impairing pollu-
tion depends on the foregone earnings from increased morbidity and mortality.
From this point of view a given amount of health impairing pollution should be
done in the country with the lowest cost, which will be the country with the low-
est wages. I think the economic logic behind dumping a load of toxic waste in the
lowest wage country is impeccable and we should face up to that.

That toxic dumping in low-wage countries has "impeccable economic logic" is an
interesting assertion. Here are three claims, each ofwhich seems to us correct:

1. It is probably the case that the average willingness to pay for avoiding a little
more toxic waste is higher in rich countries than in poor countries.

2. Hence, moving some toxic pollution from rich countries to poor countries will
increase net material well-being in the world.

3. If these are the only costs and benefits (e.g., we don t count allowing rich coun-
tries not to take responsibility for their own actions as a direct cost) and we are
utilitarians, then doing so is good policy.

To call that chain of arguments "economic logic" is troubling, for at least the last step
has nothing to do with economics; it has to do with values. And the assumption in the
first step that it makes sense to value outcomes based on willingness to pay also builds
in potentially troubling normative priorities. We suspect the value of a marginal dollar
is lower for richer people. So richer people have a higher willingness to pay than poorer
people for the same change in well-being, simply because they value money differently.
This means that ifwe evaluate costs and benefits based on peoples willingness to pay, we
are implicitly assuming the well-being of the rich is more important than the well-being
of the poor.

Despite the ubiquity of these kinds of issues, at times, quantitative analysts seem to
lose sight of the fact that making decisions by comparing such measures of material
costs and benefits isn't value-free. Michael Greenstone, a prominent energy and envi-
ronmental economist, makes the issue particularly clear in an argument he offers for
using cost-benefit analysis for policy decision making:

I think once we leave cost benefit analysis, then things start to bleed in often, not
always, but often into moral decisions. And the deep problem, from my perspec-
tive, about moral-based decision making on a lot of these matters is that your
morals aren't my morals, and a third person's morals are different than both of
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our morals. And then there's really no bounds on decision making... I have no
confidence that what's good for all of society will be the result.

Greenstone is making an important point. By quantifying costs and benefits we put
bounds on decision making. Such constraints can be very valuable. But he pushes the
argument too far when he suggests that cost-benefit analysis takes subjective moral
opinions out of the equation or that there is some objective scientific way to judge
what's good for society without first making a set of value judgments that cannot be
determined by evidence alone.

Of course, we can think of lots of reasons that, even if it passes a cost-benefit test,
shifting toxic waste from rich to poor countries doesn't seem like good policy. Maybe we
value fairness, justice, and economic mobility, such that we dont think dumping toxic
waste on the poorest countries is a good idea. Maybe we think rich countries should
take responsibility for their own actions. Maybe we dont want to live in the kind of
world where rich people can simply pay for the right not to be affected by the pollu-
tion that is a byproduct of the economic activity from which they benefited. Maybe we
think that the fact that poor people are less willing to pay to avoid toxic waste should
be interpreted to imply not that their lives are less valuable than rich peoples but that
money is the wrong way to measure worth. Greenstones point is right—reasonable
people may disagree on all of these moral judgments. But reasonable people may also
disagree on whether maximizing benefits net of costs justifies shipping waste from rich
to poor countries. We must not let the fact that costs and benefits measured in terms
ofwillingness to pay are relatively straightforward to quantify, while some other values
are harder to quantify, fool us into thinking that evaluating things this way is objec-
tive science, while everything else is subjective value judgments. It all involves value
judgments.

To be clear, we dont mean to suggest that there are no arguments in favor of the
views expressed in Summerss memo. Suppose Summers is correct that transferring
toxic waste from the rich to the poor will increase net material well-being. Then the
rich might be able to more than compensate the poor for taking the toxic waste, leaving
both parties better off as a result of a trade. Hence, if we have the technological ability
and political will to get the poor to take the toxic waste and to get the rich to pay them
for doing so, we might be able to create a win-win situation.

But of course, there are lots of other moral arguments to consider as well. In our
view, it should matter how this decision is made. We would think very differently about
poor countries agreeing to accept toxic waste in exchange for compensation than we
would about an economist in a rich country making the decision and telling the poor
country that they're better off. But Summers s memo doesn't even express concern about
whether the poor countries will be compensated or agree to this arrangement. The crass
utilitarian argument, on its own, appears to suffice. To his credit, in later discussions
of the toxic waste memo, Summers expressed a different view. For instance, in a 1998
interview with the New Yorker he said, "The basic sentiment that it is good to ship toxic
wastes to poor countries is obviously all wrong. Are there real issues about trade-offs
between growth and the environment? Sure. But the way the thoughts were expressed
wasn't constructive in any sense."

The cases of abused children and toxic dumping are interesting for several reasons.
Quantification often pushes us toward crass utilitarianism, which can lead to ruth-
less and absurd conclusions. But the discipline of quantification also really does teach
us something. For many people, the rich dumping their toxic waste onto the poor
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might not appear to be a policy idea with anything to recommend it. The exercise of
quantifying and comparing costs and benefits forces us to see that there is a serious
argument to be made for this policy (at least the version of it that involves consent and
compensation), even if ultimately some of us come down on the other side.

In both cases, we believe we can (and should) realize some of the benefits of
quantification—precision, weighing trade-offs, contestability. But both cases also illus-
trate a key concern. Rights, dignity, and fairness are hard to quantify. Material costs
and benefits are easier. And so, in practice, the desire for quantitative evidence pushes
us toward a focus on the kind of highly objectionable, crass, materialist utilitarianism
that characterizes these stories. Ifwe are to use quantitative analysis for good, we must
strive toward a practice in which data and quantitative tools help us estimate impor-
tant quantities without distorting the goals and values against which we evaluate our
choices.

Think Clearly and Help Others Do So Too
Wed like to conclude by urging you to use the tools and skills you've learned for good.

Much of this book was about how thinking clearly can help you spot when someone is
intentionally or accidentally misleading you with data. But a cynical reader could turn
that noble mission on its head, using these tools as a recipe for misleading others who
haven't learned to think as clearly. Unless sales of this book really go through the roof,
most people you interact with wont notice if you assert correlation without variation,
claim evidence for a causal relationship from a correlation that you know is confounded,
or keep making comparisons until you find the conclusion you want and then only
report that one. Please don t do that! Think about the larger quest for truth, and take
your newfound responsibility as a savvy quantitative thinker seriously. Be transparent
about the strengths and weaknesses of the evidence you bring to bear, whether that is
evidence you created through your own analysis or read about in someone else's. In so
doing, you can help others, as well as yourself, think clearly with data.

But, most importantly, take a moment to appreciate how hard you have worked and
how far we have come together. You are now a member of a small but growing group of
people in the world who can think clearly about the problem of selecting on the depen-
dent variable, the difference between statistical and substantive significance, reversion
to the mean, publication bias, the sources of cosmic habituation, the relationship bet-
ween correlation and causation, foundational ideas about research design, and so much
more. These are fundamental conceptual understandings that will serve you well for-
ever, even if you never run another regression. Because we all now live in a time in
which thinking clearly with and about data is absolutely essential for anyone who wants
to understand the world and make it a better place.

Exercises

17.1 Your friend Andy has noticed that every time he eats pancakes for breakfast,
he does well on his exams. Therefore, he has decided that his diet will, from
here on out, consist entirely of pancakes. On the basis of the lessons from the
entire book, list at least four things wrong with your friend's reasoning.

17.2 You are the mayor of a major city, and your staff presents you with a plan to
provide more amenities to low-income neighborhoods. They tell you that their
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plan will cost $100 million, but they estimate that it will provide $200 million
of economic benefits, so its a no-brainer. What questions would you want to
ask your staff before deciding to proceed with the plan?

17.3 Think of a decision in your life that you ve made largely without the help of
quantitative evidence (such as Anthony deciding to floss despite there being
few compelling, quantitative studies on the topic). What factors led you to
make the decision you did? Can you propose a quantitative study that would
provide more compelling evidence? What would the evidence have to look like
in order for you to change your decision?

Readings and References
You can read the EPAs report on the arsenic regulation, including the long list of non-
quantifiable health impacts, in the federal register at https://www.govinfo.gov/content
/pkg/FR-2001-01-22/pdf/01-1668.pdf.
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tal Cleaning Devices, in Addition to Toothbrushing, for Preventing and Controlling
Periodontal Diseases and Dental Caries." Cochrane Database of Systemic Reviews,
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Bouvier, and William D. Ristenparth. 2020. "Efficacy ofMasks and Face Coverings in
Controlling Outward Aerosol Particle Emission from Expiratory Activities." Scientific
Reports 10, Article 15665. doi.org/10.1038/s41598-020-72798-7.

For evidence on the relationship between wearing a mask and touching your face, see

Yong-Jian Chen, Gang Qin, Jie Chen, Jian-Liang Xu, Ding-Yun Feng, Xiang-Yuan Wu,
and Xing Li. 2020. "Comparison of Face-Touching Behaviors Before and During the
Coronavirus Disease 2019 Pandemic." JAMA Network Open 3(7).

Tiffany L. Lucas, Rachel Mustain, and Robert E. Goldsby. "Frequency of Face Touch-
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For a discussion of how race relates to disparate health outcomes in the United
States, see
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David Cutler, Adriana Lleras-Muney, and Tom Vogl. 2011. "Socioeconomic Status and
Health: Dimensions and Mechanisms." The Oxford Handbook of Health Economics,
Sherry Glied and Peter C. Smith, eds. Oxford University Press.

We referenced this study in our discussion of how quantitative tools can sneak in
values:

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. 2019.
"Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations."
Science 366(6464):447-53.

You can find the quotation from Summers and a discussion of the toxic waste memo
here:

John Cassid. 1998. "The Triumphalist." The New Yorker. July 6.
The quotation from Michael Greenstone is from this podcast:

"The Value of a Life" (episode 1). Pandemic Economics. Becker Friedman Institute.
April 23,2020. bfi.uchicago.edu/podcast/pandemic-economics-01.

The discussion of how quantification can shape our moral values draws heavily on
Ethan Bueno de Mesquita. 2019. "The Perils of Quantification." The Boston Review.
March 11. https://bostonreview.net/forum/economics-after-neoliberalism/ethan
-bueno-de-mesquita-perils-quantification.
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